

THIRUVALLUVAR UNIVERSITY

SERKKADU, VELLORE-632115

M.Sc. CHEMISTRY

SYLLABUS

FROM THE ACADEMIC YEAR
2023 - 2024

CONTENTS

1.		Preamble
2.		StructureofCourse
3.		LearningandTeachingActivities
4.		TutorialActivities
5.		LaboratoryActivities
6.		Field StudyActivities
7.		AssessmentActivities
	7.1	Assessmentprinciples
	7.2	AssessmentDetails
8.		Teachingmethodologies
9.		FacultyCourseFile
10.		TemplateforPGProgrammein Chemistry
11.		TemplateforSemester
12.		Instructions for Course Transaction
13.		TestingPattern
14.		DifferentTypesofCourses
15.		Elective Courses (ED from other Department Experts)
16.		SkillDevelopmentCourses
17.		Institution-Industry-Interaction
18.		ModelSyllabus

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM						
FRA	FRAMEWORK FOR POSTGRADUATE EDUCATION					
Programme	M. Sc., Chemistry					
Programme Code						
Duration	PG – 2YEARS					
Programme	O1: Problem Solving Skill					
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.					
	PO2: Decision Making Skill					
	Foster analytical and critical thinking abilities for data-based decision-making.					
	PO3: Ethical Value					
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.					
	PO4: Communication Skill					
	Ability to develop communication, managerial and interpersonal skills.					
	PO5: Individual and Team Leadership Skill					
	Capability to lead themselves and the team to achieve organizational goals.					
	PO6: Employability Skill					
	Inculcate contemporary business practices to enhance employability skills in the competitive environment.					
	PO7: Entrepreneurial Skill					
	Equip with skills and competencies to become an entrepreneur.					
	PO8: Contribution to Society					

Succeed in career endeavors and contribute significantly to society.

PO 9 Multicultural competence

Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

PO 10: Moral and ethical awareness/reasoning

Ability to embrace moral/ethical values in conducting one's life.

Programme Specific Outcomes (PSOs)

PSO1 – Placement

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Template for P.G., Programmes

Semester-I	Credit	Hours	Semester-II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credi t	Hours
1.1. Core-I	5	7	2.1. Core-IV	5	6	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core-II	5	7	2.2 Core-V	5	6	3.2 Core-VIII	5	6	4.2 Core-XII 5		6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with 7 viva voce		10
1.4 Discipline Centric Elective -I	3	5	2.4 Discipline Centric Elective – III	3	4	3.4 Core – X	4	6	4.4Elective - VI (Industry / Entrepreneurship) 20% Theory 80% Practical		4
1.5 Generic Elective-II:	3	5	2.5 Generic Elective -IV:	3	4	3.5 Discipline Centric Elective - V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
				2	4	3.6 Skill enhancement II	2	3	4.6 Extension Activity	1	
			Human rights	2	2	3.7 Internship/ Industrial Activity	2	-			
			MOOC course	2	-	_					
	20	30		26	30		26	30		23	30

Total Credit Points -95

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

First Year – Semester – I

Part	List of Courses	Credits	No. of Hours
	Core – I	5	7
	Core – II	5	7
	Core – III	4	6
	Elective – I	3	5
	Elective – II	3	5
		20	30

Semester-II

Part	List of Courses	Credits	No. of
			Hours
	Core – IV	5	6
	Core – V	5	6
	Core – VI	4	6
	Elective – III	3	3
	Elective – IV	3	3
	Skill Enhancement Course [SEC] - I	2	4
	Human rights	2	2
	MOOC course	2	-
		26	30

Second Year - Semester - III

Part	List of Courses	Credits	No. of Hours
	Core – VII	5	6
	Core – VIII	5	6
	Core – IX	5	6
	Core (Industry Module) – X	4	6
	Elective – V	3	3
	Skill Enhancement Course - II	2	3
	Internship / Industrial Activity [Credits]	2	-
		26	30

Semester-IV

Part	List of Courses	Credits	No. of Hours
	Core – XI	5	6
	Core – XII	5	6
	Project with VIVA VOCE	7	10
	Elective – VI (Industry Entrepreneurship)		4
	Skill Enhancement Course – III / Professional Competency Skill		4
	Extension Activity	1	-
		23	30

Total 95 Credits for PG Courses

2. StructureofCourse

CourseCode		CourseName			Credits	
LectureHours:(L)	TutorialH		LabPractice	•	Total:(L+T+P)	
perweek	(T)perwee		Hours: (P)per		perweek	
CourseCategory:	Year&Ser	mester:		Admis	sionYear:	
Pre-requisite						
Linksto otherCourses						
LearningObjectives:(forteachers:whattheyl	navetodoi	ntheclass/lab/fie	ld)		
CourseOutcomes:(for	students:Toknowwha	ttheyareg	oingtolearn)			
CO1:						
CO2:						
CO3:						
CO4:						
CO5:						
Recap:(notforexamina	tion)Motivation/previ	iouslectur	e/relevantportion	nsrequi	redforthe	
course)[Thisisdoneduri	ng2Tutorialhours)					
Units	Contents				RequiredHours	
I					15	
II					15	
III					15	
IV					15	
V					15	
ExtendedProfessional	Questionsrelatedtoth	eaboveto	pics,fromvarious	scomp		
Component(isapartofi	etitiveexaminationsU	JPSC/TR	B/NET/UGC-			
nternalcomponent	CSIR/GATE/TNPSO	C/othersto	besolv			
only,Notto	ed(Tobediscusseddu	ringtheTu	torialh			
	our)	J				

be includedin							
the							
ExternalExaminationq							
uestion							
paper)							
Skillsacquiredfrom the course	Knowledge,ProblemSolving,Analyticalability,ProfessionalCompetency,ProfessionalCommunicationandTransferrable Skill						
LearningResources:							
Recommende	 RecommendedTexts 						
• ReferenceBooks							
Webresources	• Webresources						
BoardofStudiesDate:							

3. LearningandTeachingActivities

3.1 TopicwiseDeliverymethod

HourCount	Topic	Unit	ModeofDelivery		

3.2 WorkLoad

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

Activity	Quantity	Workloadperiods
Lectures	60	60
Tutorials	15	15
Assignments	5	5
CycleTestorsimilar	2	4
ModelTestorsimilar	1	3
UniversityExam	1	3
	Total	90periods

TutorialActivities

TutorialCount	Торіс

4. LaboratoryActivities

5. Field StudyActivities

6. AssessmentActivities

6.1 AssessmentPrinciples:

Assessmentforthiscourseis basedonthefollowingprinciples

- 1. Assessment must encourageandreinforcelearning.
- 2. Assessment must measure achievement of the stated learning objectives.
- 3. Assessmentmustenablerobustandfair judgmentsaboutstudent performance.
- 4. Assessmentpracticemustbefairandequitabletostudentsandgivethemthe opportunitytodemonstratewhattheylearned.
- 5. Assessmentmustmaintainacademicstandards.

6.2 AssessmentDetails:

AssessmentItem	DistributedDueDate	Weightage	Cumulative
			Weightage
Assignment1	3 rd week	2%	2%
Assignment2	6 th Week	2%	4%
CycleTest-I	7 th Week	6%	10%
Assignment3	8 th Week	2%	12%
Assignment4	11 th Week	2%	14%
CycleTest-II	12 th Week	6%	20%
Assignment5	14 th Week	2%	22%
ModelExam	15 th Week	13%	35%
Attendance	Allweeks as perthe	5%	40%
	AcademicCalendar		
UniversityExam	17 th Week	60%	100%

- a. AcademicSchedule
- b. StudentsNameList
- c. TimeTable
- d. Syllabus
- e. LessonPlan
- f. StaffWorkload
- g. CourseDesign(content,CourseOutcomes(COs),Deliverymethod,mappingofCOswithProgrammeOutcomes(POs), AssessmentPatternintermsofRevisedBloom'sTaxonomy)
- h. SampleCOAssessmentTools.
- i. FacultyCourseAssessment Report(FCAR)
- j. CourseEvaluationSheet
- k. TeachingMaterials(PPT,OHPetc)
- 1. Lecture Notes
- m. HomeAssignmentQuestions
- n. TutorialSheets
- o. RemedialClassRecord,ifany.
- p. Projectsrelated to the Course
- q. LaboratoryExperimentsrelatedto the Courses
- r. InternalQuestionPaper
- s. ExternalQuestionPaper
- t. SampleHomeAssignmentAnswerSheets
- u. Threebest,threemiddlelevelandthreeaverageAnswersheets
- v. ResultAnalysis(COwiseandwholeclass)
- w. QuestionBank
 - forHigherstudiesPreparation(GATE/Placement)
- x. Listofmenteesandtheiracademicachievements

 $\label{lem:condition} Illustration-I & Credit Distribution for PGP rogramme in Chemistry M.Sc. \\ & Chemistry \\$

	FirstYear Semester-I	Credit	Hoursper
			week(L/T/P)
PartA	CC1-Organic Reaction Mechanism-I	5	7
	CC2-Structure and Bonding in Inorganic Compounds	5	7
	CC3 –Organic Chemistry Practical	4	6
	ElectiveI (Generic/DisciplineSpecific) (OnefromGroup A) Pharmaceutical Chemistry/ Nanomaterials and Nanotechnology	3	5
	ElectiveII (Generic/DisciplineSpecific) (OnefromGroupB)	3	5
	Electrochemistry / Molecular Spectroscopy		
	Total	20	30

	FirstYear Semester-II	Credit	Hours per week (L/T/P)
PartA	CC4-Organic Reaction Mechanism-II	5	6
	CC5- Physical Chemistry – I	5	6
	CC6 – Inorganic Chemistry Practical	4	6
	ElectiveIII (Generic/DisciplineSpecific) (OnefromGroup C)	3	3
	Medicinal Chemistry / Green Chemistry		
	ElectiveIV (Computer / IT related) (OnefromGroup D)	3	3
	Bio-inorganic Chemistry / Material Science		
	Skill Enhancement Course – SEC 2 (One From Group G)	2	4
	Human rights	2	2
	MOOC course	2	-
	Total	26	30

	Semester-III	Credit	Hours per
			week (L/T/P)
PartA	CC7–Organic Synthesis and Photochemistry	5	6
	CC8– Coordination Chemistry – I	5	6
	CC9–Physical Chemistry Practical	5	6
	CC10- Analytical Instrumentation Technique Practical	4	6
	Elective V (Generic/DisciplineSpecific) (OnefromGroup E)	3	3
Part B	Pharmacognosy and Phytochemistry		
	Skill Enhancement course- SEC 3: Professional Communication Skill- Term paper and Seminar Presentation	2	3
	Internship / Industrial Activity	2	-
	Total	26	30

	Second Year Semester-IV	Credit	Hours per
			week (L/T/P)
PartA	Core Project with viva voce,	7	10
	CC11- Coordination Chemistry –II	5	6
	CC12- Physical Chemistry – II	5	6
	Elective VI (Generic / Discipline Specific) (One from Group F)	3	4
Part B	Chemistry of Natural Products / Polymer Chemistry		
T urt B	Professional Competency Skill Enhancement	2	4
	CourseTraining for Competitive Examinations		
	• Chemistry for NET / UGC - CSIR/ SET / TRB Competitive		
	Examinations (2 hours)		
	General Studies for UPSC / TNPSC / Other Competitive		
	Examinations (2 hours)[OR] Chemistry for Advanced Research Studies (4 hours)		
	Extension Activity	1	-
	Total	23	30

Consolidated TableforCreditsDistribution

	Category	Credits	Number	NumberofCred	TotalC	TotalCreditsf
	ofCourses	foreac	ofCours	its in	redits	or the
		h	es	eachCategoryo		Programme
		Course		f		
				Courses		
	Core	5	10	58		
DADTA		4	2			
PART A	Project with	7	1	7		
	vivavoce					
	Industry					
	alignedProgr				83	
	ammes-					
	Elective(Gene					
	ricandDiscipli	3	6	18		
	ne					
	Centric)					
PARTB	SkillEnhance					92(C
(i)	ment&					GPA)
(1)						
		2	3	6	10	
	Human rights					
	and MOOC	2	1			
	course	2 2	1 1	4		
		2	1	7		
PART B	Ability	2	4	8		
(ii)	Enhancement					
(11)	(Softskill)				2	
	SummerI	1	2	2		3(Non
(iii)	nternship	•	_			CGPA)
						ĺ
PART C	Extension	1	1	1	1	
	Activity					
						95

7. TemplateforSemester

Code	Category	TitleofthePaper	Marl (Max		Duration for UE	Credits
			CIA	UE	-	
Semeste	r–I			•		
PartA	CoreI	Organic reaction mechanism-I	25	75	3Hrs	5
	CoreII	Structure and Bonding in Inorganic compounds	25	75	3Hrs	5
	CoreIII	Organic chemistry Practical	25	75	6Hrs	4
	ElectiveI	Elective- I(Pharmaceutical chemistry/ Electrochemistry)	25	75	3Hrs	3
	ElectiveII	Elective- IIMolecular spectroscopy/ Nanomaterials and		75	3Hrs	3
		nanotechnology	Total			20
			Totai	20		
Semest	ter-II					
PartA	CoreIV	Organic reaction mechanism-II	25	75	3Hrs	5
	CoreV	Physical Chemistry-I	25	75	3Hrs	5
	CoreVI	Inorganic chemistry Practical	25	75	6 Hrs	4
	ElectiveIII	Elective-III (Medicinal chemistry/Green chemistry)	25	75	3Hrs	3
	ElectiveIV	Elective-IV(Bio- inorganic chemistry/Materi als chemistry)	25	75	3Hrs	3

PartB	SkillEnhance	(Choose one	InternalAssessment	
	ment	fromGroup-G)		2
	Course-SEC2			
	Human rights			2
	MOOC			2
	course			
			Total	
				26

Semes	ster-III						
PartA	Core VII	Organic synthesis and Photochemistry	25	75	3Hrs	5	
	Core VIII	Corodination chemistry-I	25	75	3Hrs	5	
	CoreIX	PHYSICAL CHEMISTRY PRACTICAL	25	75	6Hrs	5	
	Core X	ANALYTICAL INSTRUMENTATION TECHNIQUES Practical	25	75	6Hrs	4	
	Elective/EDV	Elective-VI /ED- V(Pharmacognosy and Phytochemistry)	25	75	3Hrs	3	
PartB			'	'			
	Skill based(TermpaperandSeminar)	Assignmentofproblem bythefacultyLecture-I(bythestudent) 25%Lecture- II(bythestudent) 25%Lecture- III(bythestudent) 25% Submissionofawrite-up (10-15pagesusingLaTeX) 25% Marks/Grade Point/ LetterGrade asperthe Regulation)					
	Internship/Industrial- Vacation	,				2	
	-	Total				26	
Semeste	er-IV						
PartA	CoreXI	Coordination chemistry-II	25	75	3Hrs	5	
	CoreXII	Physical chemistry-II	25	75	3Hrs	5	
	Core Project with viva voce					7	
	ElectiveVI	Elective-VI (Chemistry of natural products/ Polymer chemistry)	25	75	3Hrs	3	
PartB	SkillEnhancement Course-SEC4	ProfessionalCompetency Skill EnhancementCourse	InternalAssessment			2	
PartC	Extension Activity	Performancebasedassessme	nt			1	
					Total	23 95	
TotalCredits							

ElectiveCourses

Coursesaregrouped(GroupAtoGroupF)soastoincludetopicsfromPureChemistry(P C),AppliedChemistry (AC) and IndustrialComponents(IC) like pharmaceutical industries, Polymer labscoursesforflexibilityofchoicebythe stakeholders/institutions.

SemesterI:ElectiveIandElectiveII

ElectiveI tobe chosenfromGroupAandElective II tobe chosenfromGroupB

GroupA:(PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Electrochemistry

GroupB:(PC/AC/IC)

- Nanomaterials and Nanotechnology
- 2. Molecular Spectroscopy

SemesterII:ElectiveIII& ElectiveIV

Elective III to be chosen from Group C and Elective IV to be chosen

from Group DGroup C:(PC/AC/IC)

- 1. Medicinal Chemistry
- 2. Green Chemistry

GroupD:(PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

SemesterIII:ElectiveV

Elective Vtobe chosenfromGroupE.

GroupE:(PC/AC/IC)

- 1. Pharmacognosy and Phytochemistry
- 2. Biomolecules and Heterocyclic compounds

SemesterIV:ElectiveVI

ElectiveVIto be chosen fromGroupF.

GroupF:(PC/AC/IC)

- 1. Chemistry of Natural products
- 2. Polymer Chemistry

SkillEnhancementCourses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders /institutions.

GroupG(SkillEnhancementCourses)SEC:(Practical based paper)

- ➤ Computational Chemistry
- ➤ 3D printing in Chemistry
- > Preparation of Consumer products
- ➤ Chemistry in everyday life
- ➤ Cosmetic Chemistry
- Origin lab
- ➤ Industrial Chemistry
- ➤ Research Tools and Techniques

AbilityEnhancement Courses

➤ Soft Skill courses

ExtraDisciplinaryCoursesforotherDepartments(not forMathematicsstudents)
StudentsfromotherDepartmentsmayalsochooseanyoneofthefollowing
asExtraDisciplinaryCourse.

ED-I: Chemistry for

Life Sciences

ED-II:Chemical

conservation

ED-III: Chemistry in food

preservation

ED-IV:Chemistry for Social

studies

ED-V:Chemistry in consumer products

8. InstructionsforCourseTransaction

Courses	Lecture	Tutorial	LabPractice	Total
	Hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
ED	75	15		90
LabPracticeCourses	-	15	75	90
Project	20		70	90

9. Testing Pattern (25+75)

13.1Internal Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for amaximumof25marks. The duration of each test shall be one/one and a half hour.

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be twotests in Theory part and two tests in Laboratory part. Choose one best from Theory part and otherbest from the two Laboratory part. The average of the best two can be treated as the CIA for amaximumof25marks. The duration of each test shall be one/one and a halfhour.

There is no improvement for CIA of both theory and laboratory, and, also for University EndSemester Examination.

14. DifferentTypesofCourses

(i) CoreCourses(Illustrative)

- 1. Organic Reaction mechanism I & II
- 2. Structure and bonding in Inorganic compounds
- 3. Organic Chemistry Practical
- 4. Physical Chemistry-I & II
- 5. Inorganic Chemistry Practical
- 6. Organic synthesis and Photochemistry
- 7. Coordination Chemistry-I & II
- 8. Physical Chemistry Practical
- 9. Analytical Instrumentation technique practical

(ii) ElectiveCourses(EDwithintheDepartmentExperts)(Illustrative)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology
- 3. Electrochemistry
- 4. Molecular Spectroscopy
- 5. Medicinal Chemistry
- 6. Green Chemistry
- 7. Pharmacognosy and Phytochemistry
- 8. Biomolecules and Heterocyclic compounds
- 9. Bio inorganic Chemistry
- 10. Material Science
- 11. Chemistry of Natural products
- 12. Polymer chemistry

(iii) Elective Courses (ED from other Department Experts)

(iv) SkillDevelopmentCourses

 $(v)\ In stitution-Industry-Interaction (Industryaligned Courses)$

 $Programmes\ / course\ work/fieldstudy/Modelling\ the\ Industry$

Problem/StatisticalAnalysis/Commerce-Industryrelatedproblems/MoU withIndustryandthelike activities.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION				
Programme	M.Sc.			
Programme Code				
Duration	2 years for PG			
Programme	PO1: Problem Solving Skill			
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.			
	PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making.			
	PO3: Ethical Value			
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.			
	PO4: Communication Skill			
	Ability to develop communication, managerial and interpersonal skills.			
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals.			
	PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.			
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.			
	PO8: Contribution to Society			
	Succeed in career endeavors and contribute significantly to society.			
	PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective.			
	PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.			
Programme	PSO1 – Placement			
Specific Outcomes (PSOs)	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.			
	PSO 2 - Entrepreneur			
	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.			

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

15. Syllabusfordifferent CoursesofM.Sc. Chemistry

Title of the	ORGANIC	REACTION	ME	CHANISM -	- I		
Course							
Paper No.	Core I	**	-	G 11:	1		
Category	Core	Year	I	Credits	4	Course	
	_	Semester	I			Code	
Instructional	Lecture	Tutorial	Lat	Practice		Total	
hours per	4	1	-			5	
week	D :		1	• ,			
Prerequisites		pts of organic		•	1 .		
Objectives of		and the feasib	ılıty	and the me	chani	ism of various	organic
the course	reactions.	1 1 41 4	1 !	41	1.4.		
	mechanisms		nnıq	ues in the	aete	ermination of	reaction
			ant c	of starancha	mistr	y involved in	organia
	compounds.		ept c	of stereoche	misu	y involved in	organic
			e the	differences	invol	ved in the vario	ous types
		eaction mechan			111 / 01	ved in the varie	ous types
					r the	preparation	of organic
	compounds.	-				FF	
Course			ermii	nation of R	Leaction	on Mechanism	: Reaction
Outline						on coordinate	
						of reactions:	
	postulate. N	Methods of de	eterm	ining mech	anism	: non-kinetic	methods -
	product ana	lysis, determin	natio	n of interme	ediate	s-isolation, det	ection, and
	11					elling, isotope	
						- relation of	
						mmett and Taff	•
		energy relation	iship	, partial rate	facto	r, substituent a	and reaction
	constants.						
			-		•	Substitution:	
	_	•				n-benzenoid,	•
						ic substitution:	
						ohenol, nitrobe electrophiles:	
				_	_	lectrophiles: su	
						ion; Carbon ele	
	_					ation reactions	
						SEi, SE1- Med	
	evidences.	. Lucinium I	.10011		· unu	221, 221 11100	
		romatic and	Alin	hatic Nucle	ophili	c Substitution	: Aromatic
						Ar, SN1 and	
	_					f structure, lea	-
						and Sulphur-nu	
						1	. /

Bucherer and Rosenmund reactions, von Richter, Sommelet-Hauser and

Smiles rearrangements. SN1, ion pair, SN2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon.SN1, SN2, SNi, and SE1 mechanism and evidences.

UNIT-IV:Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, centre, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centres. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining the configuration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, exo-cyclic alkylidene-cycloalkanes. Asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis

UNIT-V:Stereochemistry-II: Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium. Stability of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation.

Extended
Professional
Component (is a part of internal component only, Not to be included in the external examination question paper)
Skills acquired

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001.
- 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.
- 3. P.S.Kalsi, Stereochemistry of carbon compounds, 8th edition, New Age International Publishers, 2015.
- 4. P. Y. Bruice, Organic Chemistry, 7th edn, Prentice Hall, 2013.
- 5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014.

Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw
	Hill, 2000.
	5. I. L. Finar, Organic chemistry, Vol-1&2, 6 th edition, Pearson
	Education Asia, 2004.
Website and	1. https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	<u>chemistry/organic</u>
source	2. https://www.organic-chemistry.org/

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5:To design and synthesize new organic compounds by correlating the stereochemistryof organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

Strong - 3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

	Methods of Evaluation	
	Continuous Internal Assessment Test	
Internal	Assignments	25 Marks
Evaluation	Seminars	23 Warks
	Attendance and Class Participation	
External Evaluation	End Semester Examination	75 Marks
	Total	100 Marks
	Methods of Assessment	
Recall (K1)	Simple definitions, MCQ, Recall steps, Co	oncept definitions.
Understand/ Comprehend (K2)	MCQ, True/False, Short essays, Concept e overview.	explanations, short summary or
Application	Suggest idea/concept with examples, sug	gest formulae, solve problems,
(K3)	Observe, Explain.	
Analyze (K4)	Problem-solving questions, finish a Differentiate between various ideas, Map	
Evaluate (K5)	Longer essay/ Evaluation essay, Critique of	or justify with pros and cons.
Create (K6)	Check knowledge in specific or offbeat si or Presentations.	tuations, Discussion, Debating

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the	STRUCT	TURE AND	BO	NDING IN	N INC	ORGANIC CO	MPOUNDS			
Course										
Paper No.	Core II									
Category	Core	Year	I	Credits	4	Course				
		Semester	I			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	-			5				
Prerequisites		cepts of In								
Objectives of the	To determ	nine the str	uctur	al propert	ies o	f main group o	compounds and			
course	clusters.									
	To gain	fundamenta	l kn	owledge o	on th	e structural as	spects of ionic			
	crystals.									
	To famili	arize variou	s diff	raction and	d mic	roscopic techni	ques.			
						ne defects in ior	•			
	To evalua	te the struct	ural a	aspects of	solid	S.	•			
Course Outline	UNIT-I:	Structure of	mair	group co	mpoi	ınds and cluster	rs: VB theory –			
	Effect of	lone pair a	nd el	ectronegat	tivity	of atoms (Ben	t's rule) on the			
	geometry	of the me	olecu	les; Struc	ture	of silicates -	applications of			
	, .						ents in silicates			
	_					_	wo dimensional			
		_	-				Structural and			
							y acids – types,			
	_					-				
							atures of closo,			
							Wade's rule to			
	_					ain group cluste				
							cking of ions in			
							crystal lattice, netry operations			
							nd space group;			
							de equation -			
		ski equation					ac equation			
							es of the crystal			
							nd anti-fluorite,			
	rutile and	anatase, ca	dmiu	m iodide a	and n	ickel arsenide;	Spinels -normal			
	and inver	se types an	d pe	rovskite st	tructu	ires. Crystal G	rowth methods:			
	From me	lt and solu	tion	(hydrother	mal,	sol-gel method	ds) – principles			
	and									
	examples									
							ray diffraction			
							Principle and			
			•			data, Phase	*			
						nce of reflect				
						rumentation an				
							and electron			
	microscopy, theory, principle, instrumentation, sampling methods and									

	applications of SEM and TEM.
	UNIT-V:Band theory and defects in solids
	Band theory – features and its application of conductors, insulators and
	semiconductors, Intrinsic and extrinsic semiconductors; Defects in
	crystals – point defects (Schottky, Frenkel, metal excess and metal
	deficient) and their effect on the electrical and optical property, laser
	and phosphors; Linear defects and its effects due to dislocations.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	(10 be discussed during the Tutorial nodes)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th Edition, CRC Press, 2012.
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders
	company: Philadelphia, 1977.
	5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;
	4th ed.; Harper and Row: NewYork, 1983.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video galleries/lecture-videos/
c-icai iiing source	ian-2010/video ganeries/rectare-videos/

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5:To understand the principles of diffraction techniques and microscopic techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	ORGAN	IC CHEMI	STR	Y PRAC	ΓICA	A L					
Course											
Paper No.	Core III										
Category	Core	Year	I	Credits	4	Course					
		Semester	I			Code					
Instructional	Lecture	Tutorial	Lal	b Practice		Total					
hours per week	-	1	5			6					
Prerequisites	Basic concepts of organic chemistry										
Objectives of the	To under	To understand the concept of separation, qualitative analysis and									
course	preparation	on of organi	ccon	npounds.							
	To develo	op analytica	ıl sk	ill in the	hand	lling of chemi	ical reagents for				
	separation	n of binary a	and to	ernaryorga	nic n	nixtures.					
	1 -	•					stematically and				
		them suital		J		1 2	•				
			•	erimental	setu	p for the orga	anic preparations				
	involving	two stages.									
	To exper	iment diffe	rent	purification	on a	nd drying tec	chniques for the				
		d processing									
Course Outline		Separation									
		onent mixtu		ernary com	pone	nt (Demo)					
	UNIT-II:	Estimations	S :								
) Estimation									
	1) Estimation				ion) ne (iodimetry)					
		l) Estimation				ne (louinleuy)					
		e) Estimation				limetry)					
		: Two stag				<i>)</i> /					
		Bromoaceta									
	b) p-	Nitroaniline	fron	n acetanili	de						
	/ /	3,5-Tribrom									
		cetyl salicyc			ethy	l salicylate					
	,	nzilic acid t									
	/	Nitroaniline									
	g) m-	Nitrobenzo	ic ac	id from mo	ethyl	benzoate					
Extended						m various com					
Professional			TRI	B / NET/ U	JGC-	CSIR / GATE	/TNPSC others				
Component (is a	to be solv										
part of internal	(To be dis	scussed duri	ng tl	ne Tutorial	hou	rs)					
component only,											
Not to be included											
in the external											
examination											
question paper)	V1 - 1	- Duc 1.1.	a a 1.	.i., A 1	4: - 1	alailier, Durch	rainma1				
Skills acquired from this course						ability, Profes					
						on and Transfe					
Recommended	1. A R	west, Sona	state	cnemistr	y and	i its application	ns, 2ndEdition				

Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by variouschemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5:To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3

CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHARM	ACEUTIC.	AL (CHEMIST	RY			
Course								
Paper No.	Elective 1		T _	T =: ==		T -:		
Category	Elective	Year	I	Credits	4	Course		
		Semester	I			Code		
Instructional	Lecture	Tutorial	Lal	Practice		Total		
hours per week	4	1	-			5		
Prerequisites		owledge on						
Objectives of the	To unders	stand the ad	vance	ed concept	s of p	harmaceutical	l chemistry.	
course	To recall	the principl	e and	biologica	l func	ctions of variou	us drugs.	
	To train t	he students	to k	now the in	nport	ance as well t	he consequences	
	of various	drugs.						
		-			-	is and technique		
						structural activ		
Course Outline		•				•	cal properties of	
	_						dex- Definition,	
	-			-			ecific & molar	
							tion- Dielectric	
						C 3	pharmaceutical	
							ept of viscosity,	
			low,	Kinemat	ic, k	Relative,Specif	ic, Reduced &	
	Intrinsic v		D:14	tion and	lyaia	م استام مساسم	d amplications	
						principle an	and limitations,	
			•			roduction to	and illiniations,	
		maceuticals		Properties	_	of various	types of	
		maceuticals					diagnostics, as	
							emical Properties	
						•	•	
	and drug action. Physico chemical properties of drugs (a) Partition coefficient, (b) solubility (c) surface activity, (d) degree of ionization.							
	UNIT-III: Drug dosage and product development: Introduction to							
	drug dosage Forms & Drug Delivery system – Definition of Common							
	terms. Drug Regulation and control, pharmacopoeias formularies,							
	sources of drug, drug nomenclature, routes of administration of drugs							
	products, need for a dosage form, classification of dosage forms. Drug							
	dosage ar	d product d	level	opment. In	ıtrodı	iction to drug	dosage Forms &	
	Drug Del	ivery syster	n – D	Definition of	of Co	mmon terms.	Drug Regulation	
		-	_				of drug, drug	
	nomenclature, routes of administration of drugs products, need							
	for a dosage form, classification of dosage forms.							
	UNIT-IV:Development of new drugs:Introduction, procedure							
		_					ounds, molecular	
			_			-	lationship (SAR)	
	Factors effecting bioactivity, resonance, inductive effect, isoterism,							
	bioisosterism, spatial considerations, biological properties of simple							
	functional groups, theories of drug activity, occupancy theory, rate theory, induced-fit theory.							
	meory, in	uuceu-III In	еогу.					

	UNIT-V:Computers in Pharmaceutical Chemistry: Need of computers for chemistry. Computers for Analytical Chemists Introduction to computers: Organization of computers, CPU, Computer memory, I/O devices, information storage, software components. Application of computers in chemistry: Quantitative structure activity relationship (QSAR): Development of QSAR, drug receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 Physical Chemistry- Bahl and Tuli. Text Book of Physical Pharmaceutics, IInd edition, Vallabh
	 PrakashanC.V.S. Subramanyam. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R Chatwal, Himalaya Publishing house. Instrumental method of Analysis: Hubert H, Willard,7th edition. Textbook of Pharmaceutical Chemistry by,Jayshree Ghosh, S. Chand & company Ltd.Pharmaceutical Chemistry by Dr. S. Lakshmi, Sultanchand & Sons.
Reference Books	 Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate prakashan., 2 nd edition, New age international (P) limited, New Delhi. Physical Pharmacy and Pharmaceutical Sciences by Martins, Patrick J. Sinko, Lippincott. William and Wilkins. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter, CBS Publisher Ltd. Ansels pharmaceutical Dosage forms and Drug Delivery System by Allen Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.

Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Students will be able:

CO1: To identify the suitable drugs for various diseases.

CO2: To apply the principles of various drug action and drug design.

CO3: To acquire the knowledge on product development based on SAR.

CO4: To apply the knowledge on applications of computers in chemistry.

CO5:To synthesize new drugs after understanding the concepts SAR.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	3.0	3.0	3.0	5.0	5.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	ELECTE	ROCHEMI	STR	Y						
Paper No.	Elective 1									
Category	Elective	Year	Ι	Credits	4	Course				
=		Semester	I			Code				
Instructional hours	Lecture	Tutorial	Lal	b Practice		Total				
per week	4	1	_	o i ractice	<u> </u>	5				
Prerequisites	1 -	wledge of e	electr	ochemistr	v					
Objectives of the		Basic knowledge of electrochemistry To understand the behavior of electrolytes in terms of conductance,								
course	1	osphere, inte				es in terms or	Conductance,			
		-			laatri	aal daubla lav	or of different			
		arize the su	uctui	e or the e	iectii	cal double laye	or different			
	models.									
						ensity and over	r potential.			
						nical reactions.	1: .:			
		_		• I	over	voltages and it	s applications			
C O41:		analytical te			1::4.		off footon and			
Course Outline				•		ntions, van't He viation from ic				
						and mean i				
						bye Huckel the				
						g electrolytes l				
		y coefficier					ractions. Born			
		•				Derivation of I				
	limiting	•				entration of	•			
	modificat					rolytic condu	•			
						electrolyte-qu				
	I	-			_	ons. Evidenc				
	atmosphe	re. Ion asso	ciatio	on and trip	le ioi	n formations.				
	UNIT-II:	Electrode-	elect	rolyte int	erfac	e: Interfacial	phenomena -			
	Evidence	s for electric	cal do	ouble layer	r, pol	arizable and no	n-polarizable			
						Lippmann eq				
						ena electro-osm	·			
						ntation potenti				
		•				le layer: Helm				
	1 -	-				lectrical doubl	-			
						plications and				
						y Electrode				
						ectrodes and				
						urrents, condi				
	_			-	_	arizable and no	-			
	I	s. Model of emical reac			e sys	tem, over pote	muai. Kate of			
					lor I	olmer equation	n significance			
	1 ^	-				density and syn	_			
	I	-		-		mmetry factor	-			
	I	nigh heid it Tafel equa			•	•	and transfer			
					_	ılti Electron S	vstem· Rates			
						er - Volmer e				
						p, electrode po				
	mani-sic	p 100011011. 1	····		اج عد	p, ciccirode po	ranzanon and			

depolarization. Transfer coefficients, its significance and determination, Stoichiometric number. Electro-chemical reaction mechanisms-rate expressions, order, and surface coverage. Reduction of I3-, Fe2+, and dissolution of Fe to Fe2+. Overvoltage - Chemical and electro chemical, Phase, activation and concentration over potentials. Evolution of oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams. UNIT-V:Concentration Polarization, Batteries and Fuel cells: Modes of Transport of electro active species - Diffusion, migration and hydrodynamic modes. Role of supporting electrolytes. Polarography principle and applications. Principle of square wave polarography. Cyclic voltammetry- anodic and cathodic stripping voltammetry and differential pulse voltammetry. Sodium and lithium-ion batteries and redox flowbatteries. Mechanism of charge storage: conversion and alloying. Capacitors- mechanism of energy storage, charging at constant current and constant voltage. Energy production systems: Fuel Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, hightemperature fuel cells. Extended Questions related to the above topics, from various competitive Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC Component (is a part others to be solved of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired from Knowledge, Problem solving, Analytical ability, Professional this course Competency, Professional Communication and Transferable skills. Recommended Text D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and Raghavan, Electrochemistry-Principles applications, S. Viswanathan Printers, Chennai, 2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, **Reference Books** vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. 3. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 2010. 4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.

5.	K.L.	Kapoor,	Α	Text	book	of	Physical	chemistry,	volume-3,
	Macı	nillan, 20	01.	•					

Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.
e-learning source	

Students will be able:

CO1: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activitycoefficient of electrolytes

CO5:To have knowledge on storage devices and electrochemical reaction mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	NANO M	IATERIAI	S A	ND NANC) TE	CHNOLOGY	
Course	El d'	r T					
Paper No.	Elective 1		т	C 1:4	1	Comman	
Category	Elective	Year	I	Credits	4	Course Code	
Instructional	Lastuna	Semester	Lal	. Dugatiaa			
hours per week	Lecture 4	Tutorial	Lai	Practice		Total 5	
Prerequisites	-	awladga of	owret	allogranh	v on	3	onao
					•	d material scional science of the design of	
Objectives of the course			_				
course							neir properties.
	materials.		app	nications	01	synthetically	important nano
			acteri	etice of ve	rions	nano material	s synthesized by
	new techi		acteri	istics of va	iiious	mano material	s synthesized by
		-	outes	for synthe	etical	ly used new na	no materials
Course Outline		ntroduction		•		•	anotechnologies,
Course outilite							3D. Synthesis
							lers. Features of
						-	ues of synthesis
			_				Applications of
					e na	anoscience. F	Applications of
		rials and ted			> .1		D 11 11 11
		_					, Predicting the
	* *	_				-	cture. Metallic
	nanoparti	cles, Surfac	es of	Materials	, Na	noparticle Size	and Properties.
	Synthesis	Physical an	nd ch	emical me	ethod	ls - inert gas co	ondensation, arc
	discharge	, laser abl	ation	, sol-gel,	solv	o-thermal and	l hydrothermal-
	CVD-typ	es,metallo o	rgan	ic, plasma	enha	anced, and low	-pressure CVD.
	Microway	ve assisted a	ınd el	ectrochem	nical	synthesis.	
	UNIT-III	:Mechanica	al pr	operties	of m	naterials, theor	ries relevant to
							al properties of
		rials, adh					properties of
							ides: silica, iron
		alumina - s	•		_		
		:Electrical	•			•	d Resistivity,
							netic properties,
							of magnetic -Ge, Si, GaAs,
	1 -						s p and n –type
							Hall voltage -
	interpreta						oplications of
				_		• 1	rs, photovoltaic
	and photo	_					· 1
	cell.						
	UNIT-V:	Nano thin f	ilms,	nanocomp	osite	es. Application	of nanoparticles
							synthesis, and
			_				polymer-matrix
	composite	es applicati	ons.	Character	ızatic	on – SEM, TI	EM and AFM -

	principle,instrumentation and applications.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference Books	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
	to Materials Science for Engineers. 6 ed., PEARSON Press, 2007.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
e-icai ning source	2. http://www.uptti.ac.iii/classiconii-conteni/data/dint/020cen.pdf.
Course Learning (Outcomes (for Manning with POs and PSOs)

Students will be able:

CO1: To explain methods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5:To understand the health and safety related to nanomaterial.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	MOLEC	ULAR SPE	CTF	ROSCOPY	Y							
Course												
Paper No.	Elective 1			I		T -:						
Category	Elective	Year	I	Credits	4	Course						
- · · ·		Semester	1	D		Code						
Instructional	Lecture	Tutorial	Lat	Practice		Total						
hours per week	4					5						
Prerequisites Objectives of the		owledge of s			ion o	nd wihnations a	on the anestro of					
Objectives of the course		To understand the influence of rotation and vibrations on the spectra of the polyatomic molecules.										
course	1 *				4	ECD						
	1	To study the principle of Raman spectroscopy, ESR spectroscopy, EPR spectroscopy and fragmentation patterns in Mass spectroscopy.										
	1 *			•		•						
							eiple to interpret					
						lectronic transi	terms of splitting					
	_					-						
	_	and coupling patterns using correlation techniques such as COSY, HETCOR, NOESY.										
	I .	*	ructu	ral elucida	ation	of molecules	using different					
		echniques.										
Course Outline	UNIT-I:I	Rotational a	and [Raman S	pectr	oscopy: Rotat	tional spectra of					
	diatomic	and polyato	omic	molecule	s. Int	ensities of ro	tational spectral					
	lines, effe	ect of isotop	ic sul	ostitution.	Non-	rigid rotators.	Classical theory					
	of the Ra	man effect,	polai	rizability a	is a to	ensor, polariza	bility ellipsoids,					
	quantum	theory of th	e Ra	man effec	t, Pu	re rotational R	aman spectra of					
	linear and	d asymmetr	ric to	p molecu	les,	Stokes and ar	nti-Stokes lines.					
	Vibration	al Raman sp	ectra	ı, Raman a	ectivi	ty of vibrations	s, rule of mutual					
	exclusion	, rotational	fine	structure-	O an	d S branches,	Polarization of					
	Raman sc	attered phot	ons.									
	UNIT-II:	Vibrationa	l S	pectrosco	ру:	Vibrations	of molecules,					
							ergy expression,					
		_					their symmetry,					
							spectral lines,					
							pic substitution.					
	I .	_		•			tra of diatomic rn-Oppenheimer					
	I .						s – symmetry					
		s, overtone a		is of po-	i y aro		Symmetry					
				Influence	of rot	ation on vibra	tional spectra of					
				-		-	d perpendicular					
		of linear ar										
		:Electronic		spectrosco		Electronic	Spectroscopy:					
	I		1 0			molecules,						
							$\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ ctroscopy: Basic					
	principles		30100	non ruics.	1 1101	ocicenon spec	choscopy. Dasic					
			a o	f simple	mo	lecules, X-ray	y photoelectron					
	_	-		_		•	ation inversion,					

properties of laser radiation, examples of simple laser systems. UNIT-IV:NMR and ESR spectroscopy: Chemical shift, Mechanism of shielding and de-shielding. Spin systems: Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions -AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. 13CNMR and structural correlations, Satellites. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; The g value and the hyperfine coupling parameter (A). Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g tensors, zero/non-zero field splitting, Kramer's degeneracy. UNIT-V:Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in g value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Principle of Mossbauer spectroscopy: Doppler shift, Isomer shift, Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds Ouestions related to the above topics, from various competitive Extended Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills.

Recommended	1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text	Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
TCAL	2. R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification</i>
	of Organic Compounds, 6th Ed., John Wiley & Sons, New York,
	2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book
	Society, 1987.
	4. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic
	Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, New
	Delhi, 1988.
	5. R. S. Drago, Physical Methods in Chemistry; Saunders:
	Philadelphia, 1992.
Reference Books	1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford
	University Press, Oxford, 2002.
	2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New
	York, 1974.
	3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
	Springer-Verlag, New York, 1986.
	4. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
	New York, 1997.
	5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
	Resonance; Wiley Interscience, 1994.
Website and	1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning source	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html
~	

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹FNMR and ESR spectroscopic techniques.

CO5:To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopytechniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	3.0	3.0	5.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ORGANIC	REACTION M	TECH	ANISM-II					
Course									
Paper No.	Core IV	T	T-	~ **					
Category	Core	Year	I	Credits	4	Course			
		Semester	II	75 /*		Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per	4	1	-			5			
Week Proposition	Dagia lynayyl	adas of ovasni	a ahar	nistur.					
Prerequisites Objectives of		ledge of organion of the concept		<u> </u>	honz	vanaid nan ha	nzanaid		
Objectives of the course		and annulene co		•	DEIIZ	enoid, non-oc	iizeiioiu,		
the course		and the mecha	•		vari	ous types of	organic		
	reactions wit		1113111	mvorved m	vain	ous types of	organic		
		nd the application	ns of	synthetically i	impor	rtant reagents			
		the reactivity be							
		nthetic routes for							
Course		mination and							
Outline		nechanisms. S							
		: Hoffmann and							
		ases, leaving	•			•			
		in acyclic and	_	•			•		
		•	•	•			Ū		
	lived and short-lived radicals – Production of radicals by thermal and photochemical reactions, Detection and stability of radicals, characteristics								
	1 *				-				
	of free radical reactions and free radical, reactions of radicals;								
	polymerizati			logenations,			stitutions,		
		nts. Reactivity:		•		e, aromatic su	ubstrates,		
		the attacking ra							
		Oxidation and							
		nsfer, hydride				_			
		nination, oxid		and reduc		1 0			
		of oxidation rea							
		rricyanide, mer lioxide, osmium				-	_		
		, alcohols, halic				•			
		nd Corey-Kim				•	,		
		e (DMSO-DCC							
		lemmenson, l	_						
		hydrides, M					ogeneous		
		on, MPV and B							
		Rearrangement					nt carbon:		
		colone and sen							
	_	stry, Wagner-M	-		-				
		an, Benzilic aci				•			
		cient nitrogen:			-	_			
		ents to electron							
	_	rangements. Re				•			
		-		-					
	Sievens, [1,2	2]-Wittig and [2	,3]-W	illig rearrange	ment	s.rries and Ph	ioto fries		

rearrangement.Intramolecular rearrangements - Claisen, Cope, oxy-Cope Benzidine rearrangements. UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbonhetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, of Grignard reagents, Wittig reaction, Prinsreaction. Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates –Stobbe reactions. Hydrolysis of esters and amides, ammonolysis ofesters. UNIT-V: Reagents and Modern Synthetic **Reactions:** Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH₃CN), meta-Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), n-Bu₃SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), N-bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB).Diazomethane and Zn-Cu, Diethyl maleate (DEM). Suzuki coupling, Heck reaction, Negishi reaction, Baylis-Hillman reaction. Extended Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to Professional Component (is be solved a part of (To be discussed during the Tutorial hours) internal component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. from this course

Recommende	
	1. J. March and M. Smith, <i>Advanced Organic Chemistry</i> , 5th ed.,
d Text	John-Wiley and Sons.2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry,
	Holt, Rinehart and Winston Inc.,1959.
	3. P. S. Kalsi, <i>Stereochemistry of carbon compounds</i> , 8 th edn, New
	Age International Publishers,2015.
	4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 th edn., Prentice Hall, 2013.
	5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic
	Chemistry, 7 th edn., Pearson Education,2010.
Reference	1. S. H. Pine, <i>Organic Chemistry</i> , 5 th edn, McGraw Hill
Books	International Editionn,1987.
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
	House, Bombay,2000.
	3. E.S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,
	Rinehart and Winston Inc.,1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-
	Wiley,2010.
Website and	1. https://sites.google.com/site/chemistryebookscollection02/home/organ
e-learning	<u>ic-chemistry/organic</u>
source	2. https://www.organic-chemistry.org/

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5:To design new routes to synthesis organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTE	RY-I			
Course							
Paper No.	Core V		_			I ~	
Category	Core	Year	I	Credits	4	Course	
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1	-			5	
Prerequisites		cepts of ph					
Objectives of the				s of therm	ıodyr	namics and the	composition of
course		olar quantiti		1 1	. 1	1 0.1	c
						approach of th	
			nifica	nce of M	axwe	ell-Boltzman, F	ermi-Dirac and
	Bose-Ein					0 1	
					ction	rates for the	evaluation of
		namic parai			C		
C 0 ("		the mechan					1
Course Outline				•			lar properties-
		-				-	and ternary
	· ·			_		_	modynamics of
	_	•	•			•	ygraphical and
	equation	of state m	ethoc	ls-depende	ence	of temperature	e, pressure and
	composit	ion.Thermo	dynaı	nics of id	eal a	nd non-ideal b	inary mixtures,
	Duhem	- Margulus	equ	ation app	licati	ions of ideal	and non-ideal
	mixtures.	•				efficients-stand	
		•		•		reezing point m	
		_					n of statistical
		namicscond		of		thermodyna	
			-			•	ble and non-
						•	nical particles.
							tein Statistics-
	comparis		-	ications.Pa			
	translatio	nal, vibrat				nal partition	
	monoator	nic, diatomi	ic and	l polyatom	ic ide	eal gases.	
	UNIT-II	[:Statistical	ther	modynan	nics I	I:Thermodyna	mic functions in
	terms of	partition	func	tions-calc	ulatio	on of equilibr	rium constants.
						properties: pr	essure, internal
		entropy, en		•			nholtz function
						* *	n principle.Heat
				_			hydrogen. Heat
		of solids-Eir					0
				•			of conservation
							by heat, matter
							ry-validity and
							o kinetic and lermodynamics
		cal systems		-дррисац	OH U	i meversiole ul	ici illouyilailiics
	_	•		/ • ·	•		4
							ast reactions:
	1 ransiuoi	i state the	огу-е	valuation	OI	mermodynamic	eparameters of

	activation-applications of ARRT to reactions between atoms and
	molecules, time andtrue order-kinetic parameter evaluation. Factors
	determine the reaction rates in solution - primary salt effect and
	secondary salt effect. Chain reactions-chain length, kinetics of H ₂ –
	$Cl_2\& H_2 - Br_2$ reactions (Thermal and Photochemical reactions) - Rice
	Herzfeldmechanism.Study of fast reactions-relaxation methods-
	temperature and pressure jump methods electric and magnetic field
	jump methods -stopped flow flash photolysis methods and pulse
	radiolysis.Kinetics of polymerization-free radical, cationic, anionic
	polymerization.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
	to be solved
Component (is a	
part of internal	(To be discussed during the Tutorial hours)
component only, Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of
Text	Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986.
Text	2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th
	edition, W.A.BenjaminPublishers, California, 1972.
	3. M.C. Gupta, Statistical Thermodynamics, New Age International,
	Pvt. Ltd., New Delhi, 1995.
	4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint -
	2013.
	5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of
	chemical transformation, Macmillan India Ltd, Reprint - 2011.
Reference Books	, , , , , , , , , , , , , , , , , , ,
	1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A
	Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
	2.R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas
	Publishing, Pvt. Ltd., New Delhi, 1990.
	3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974
	iviacililiali i uulidiicis, inew i uik, 17/4
	4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom
	4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996.
Website and	4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996.5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and e-learning source	4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996.

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5:To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	3.0	3.0	5.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	INORGA	NIC CHE	MIS'	TRY PRA	CTI	CAL			
Course	In (ORG)	in the Chil	VIII	11(1 11(1					
Paper No.	Core VI								
Category	Core	Year	I	Credits	4	Course			
		Semester	II	0104105	-	Code			
Instructional	Lecture	Tutorial		b Practice		Total			
hours per week	-	1	4	<u> </u>		5			
Prerequisites	Basic pri	nciples of ()uali	itative ana	lvsis	<u> </u>			
Objectives of the					_		an analytical tool		
course		antitative es					<i>,</i>		
	To recall the principle and theory in preparing standard solutions.								
				-		-	nating the amount		
		urately pro					8		
		• •					ccurately without		
	using inst		, 1		Ü		•		
			unt c	of ions, pre	sent	in a binary mi	xture accurately.		
Course Outline							a mixture of four		
	cations co	ontaining tw	о со	mmon cati	ions	and two rare	cations.Cations to		
Unit I	be tested.								
Compulsory	Group-I	: W, T							
	Group-II			lo, Cu, Bi a					
	Group-III			, V, Cr, Fe	: & T	ì			
	Group-IV			o and Mn.					
	Group-V								
	Group-VI								
***			on o	f metal co	omp	lexes: Prepara	ation of inorganic		
Unit II and III	complexe		1 .	(T\ 1	1 4			
Choose any three		tion of trist ation of pota							
		ttion of tetra							
		ition of Reii			11) 50	прпас			
					r(I) c	hloridedihydr	ate		
						e diaquachrom			
		tion of sodi							
		ition of hex							
		: Complex							
						, and calcium.			
						H control, mas			
	maskii	ng agents.			-		_		
						a mixture (pH			
						esence of iron.			
	5. Determ	ination of n	icke	l in the pre	senc	e of iron.			
Extended	Questions	related to t	he al	ove topics	s, fro	m various con	npetitive		
Professional							E/TNPSC others		
Component (is a	to be solv								
part of internal		scussed duri	ng tl	ne Tutorial	hou	rs)			
component only,	`		_			,			
Not to be included									
	l								

try:
sis;
,
nan
,

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and pot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5:To synthesize coordination compounds in good quality.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	MEDICINA	AL CHEMIST	ΓRY							
Paper No.	Elective III									
Category	Elective	Year	I	Credits	4	Course				
		Semester	II			Code				
Instructiona	Lecture	Tutorial	Lab	Practice		Total	1			
l hours per	4	1	-			5				
week										
Prerequisite	Basic knowledge of medicinal chemistry									
S										
Objectives		•				pharmaceutical	materials.			
of the course	_	wledge on me				•				
		nd the need of								
		ze with the m	ode o	f action of o	diabeti	ic agents and to	reatment of			
	diabetes.									
		and apply the a								
Course				-		action, targets				
Outline						pes, Theories				
				ergism, Dri	ug res	sistance, physic	cochemical			
		encing drug ac Antibiotics:		Justian T		of autilitiati				
						of antibiotion				
	penicllins	and tetracy		•			penicillins,			
		in.Current tren				ication of	pememis,			
						retics: Classi	fication of			
						tension, etiolo				
		•			• •	cation and me				
		• •		•		de, Amiloride.	01101110111 01			
				•		 ti-inflammator	v Drugs:			
						ication and me				
	action and	paracetamol,	Ibupre	ofen, Diclo	fenac,	naproxen, inc	domethacin,			
	phenylbutaz	one and meper	ridine.	Medicinal C	Chemis	stry of Antidiab	etic Agents			
						r the treatment				
	classification	n, Mechanisr	n of	action, Tr	eatme	nt of diabetic	c mellitus.			
		f insulin, sulfo								
				-		Introduction to				
	1	•	-			Systems and				
						ioned in ancier				
						nla, Shatavari,				
						Plants - AYUSI				
						als, - Case Str	uay : vaiue			
Extended		cts of Neem, A				competitive ex	aminations			
Professional						others to be sol				
Component		ssed during th			11 DC	omers to be sor	veu			
(is a part of	(10 00 discu	ssed during th	C TuiO	man mouns)						
internal										
component										
only, Not to										
be included										
oo merada	1									

in the external examination question paper)	
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommend ed Text	 Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry, Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th edition, 2011. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford University Press, 2013. JayashreeGhosh,AtextbookofPharmaceuticalChemistry,S.ChandandCo.Lt d,1999,1999 edn. O.LeRoy,Natural andsyntheticorganicmedicinal compounds,Ealemi,1976. S.S.AshutoshKar,MedicinalChemistry, WileyEasternLimited, NewDelhi,1993,New edn. H. Panda.The Complete Technology Book on Herbal Beauty Products
	with Formulations and Processes. NIIR Project Consultancy Services. 2005 7. Khadabadi SS, Deore SL, Baviskar BA. Experimental Phytopharmacognosy.Nirali Prakashan, Pune. 1st Edition, 2019. 8. Deore SL, Khadabadi SS, BaviskarBA.Pharmacognosy and Phytochemistry-A Comprehensive Approach. PharmMed Press, Hyderabad. 2nd Edition, 2018
Reference Books	 Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012 Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010. WilsonandGisvold'sTextbookofOrganicMedicinalandPharmaceuticalChe mistry,John M.BealeJrandJohnM. Block, Wolters Kluwer, 2011,12thedn. P.Parimoo,ATextbookofMedicalChemistry,NewDelhi:CBSPublishers.199 5. S.Ramakrishnan, K.G.PrasannanandR.Rajan,TextbookofMedicalBiochemistry,Hyderaba d: OrientLongman.3rd edition,2001.
Website and e-learning source Course Learn Students will be	https://www.ncbi.nlm.nih.gov/books/NBK482447/ https://training.seer.cancer.gov/treatment/chemotherapy/types.html https://www.classcentral.com/course/swayam-medicinal-chemistry-12908 ing Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: Predict a drugs properties based on its structure.

CO2: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: Designed to give the knowledge of different theories of drug actions at molecularlevel.

CO5:To identify different targets for the development of new drugs for the treatment of infectious and GIT.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	GREEN	CHEMIST	RY							
Course	Elective 1	ITT								
Paper No. Category	Elective	Year	Ι	Credits	1	Course				
Category	Liective	Semester	II	Credits	7	Code				
Instructional	Lecture	Tutorial		Practice		Total				
hours per week	4	1	Lat	rractice		5				
Prerequisites	Basic knowledge of general chemistry									
Objectives of the						of gree	n chemistry			
course	To discuss the principles of green chemistry. To propose green solutions for chemical energy storage and conversion. Propose green solutions for industrial production of Petroleum and Petrochemicals. Propose solutions for pollution prevention in Industrial chemical and fuel production, Automotive industry and Shipping industries. Propose green solutions for industrial production of Surfactants, Organic and inorganic chemicals.									
Course Outline	Limitation Internatio	s/ of Green	n Ch chem	emistry. C istry orga	hemi	ical accidents	Green Chemistry. , terminologies, elve principles of			
	green reag criteria, reaction.S drawback CO ₂ . Green	gents: dimet general n Supercritical s and a few en synthesis	thyl conethology example.	carbonate.Cods of arbon diamples of applicacid a	Green prepa loxide organ nd ca	solvents: Wat tration, effect e- properties nic reactions in techol.	s, advantages, n Super Critical			
	UNIT-III: Environmental pollution, Green Catalysis-Acid catalysts, Oxidation catalysts, Basic catalysts, Polymer supported catalysts-Poly styrene aluminum chloride, polymeric super acid catalysts, Poly supported photosensitizers. UNIT-IV: Phase transfer catalysis in green synthesis-oxidation using hydrogen peroxide, crown ethers-esterification, saponification, anhydride formation, Elimination reaction, Displacement reaction. Applications in organic synthesis.									
	UNIT-V: Micro wave induced green synthesis-Introduction, Instrumentation, Principle and applications. Sonochemistry – Instrumentation, Cavitation theory - Ultra sound assisted green synthesis and Applications.									
Extended Professional Component (is a part of internal component only, Not to be included in the external	examinati to be solv	ions UPSC /	TRE	3 / NET/ U	GC-0		petitive /TNPSC others			

•	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,
Text	Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill,
	NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall, 1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi, 2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,
	American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. https://www.organic-chemistry.org/
e-learning source	3. https://www.studyorgo.com/summary.php

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organicsynthesis.

CO5: To design and synthesize new organic compounds by green methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	BIO-INC	RGANIC (СНЕ	MISTRY			
Course							
Paper No.	Elective 1	[V					
Category	Elective	Year	I	Credits	4	Course	
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lal	b Practice		Total	
hours per week	4	1	-			5	
Prerequisites		owledge of					
Objectives of the		stand the rol					
course						of iron, sulpu	r.
		the toxicity					
		nowledge o		-			
G 0 41		s on various					, 1 , C
Course Outline						_	rt and storage of
						•	m and potassium
	_		_			•	:: Zinc enzymes–
	carboxyp	eptidase ar	nd o	carbonic	anhy	drase. Ironer	nzymes–catalase,
	peroxidas	e. Coppere	nzyr	nes – suj	perox	xide dismutas	se, Plastocyanin,
	Cerulopla	smin, Tyros	sinas	e. Coenzyr	nes -	Vitamin-B12	coenzymes.
	UNIT-II:	Transpor	rt P	roteins:	Oxy	gen carriers-H	Hemoglobin and
	myoglobi	n - Structu	re ai	nd oxygen	atior	Bohr Effect.	Binding of CO,
	' -						ıl redox system:
					_	_	tochrome P-450.
	•					•	nin. Iron-sulphur
				•		ructure and cla	-
	•						f nitrogen fixing
		_					s in nitrogenase-
							tal complexes of
							and reduction of
	_	_					and photosystem-
	_	hylls struct		-	_	·	
	UNIT-IV:	Metals in	medi	icine: Met	al To	oxicity of Hg,	Cd, Zn, Pb, As,
			-			n-Based Dia	O 1
						ts.Chelation t	* * .
	treatment	_		_			aging Agents;
		ım MRI Im	agin	g Agents.	tem	perature and c	critical magnetic
	Field.						
		•				*	menclature and
							ivation and the
							Effect of pH,
			ne re	actions. Fa	ector	s contributing	to the efficiency
	of enzym	e					

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams—The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,
	S. Chand, 2001 .
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery
	Publishing House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological
	processes, II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
***	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-
e-learning source	the-instant-notes-chemistry-series-d162097454.html
	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-11.615.624171
	5th-edition-d161563417.html
G I)

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5:Learn about the nitrogen fixation and photosynthetic mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	MATER	IAL SCIEN	NCEa	nd Nucle	ar C	hemistry	
Course	T71 (*)	TX 7					
Paper No.	Elective		т	G 114	1	•	
Category	Elective	Year	I	Credits	4	Course	
T	T .	Semester	II	D (1		Code	
Instructional	Lecture	Tutorial	Lat	Practice	!	Total	
hours per week	4	1	-		• ,	5	
Prerequisites		owledge of					1 1 37
Objectives of the			crys	tal struct	ure,	growth method	ods and X-ray
course	scattering		1 dia	laatria and	14:66	usion propertie	g of orgatals
							ctivity materials
	and magn		515 01	Schileone	iucio	is, supercondu	ctivity materials
	_		is cla	ssification	and	applications of	f nanomaterials.
							enewable energy
	conversion		mpor	tance of f	mater	idis dsed for it	one whose energy
Course Outline			raph	v: symme	try -	unit cell and	Miller indices -
		• 0	_	•	•		pace groups - X-
						- 1	l lattice and its
	application	n to geom	etrica	al crystall	ograp	ohy. Crystal s	tructure-powder
							y maps, neutron
	diffractio	n-method a	nd ap	plications.			_
							librium stability
							gh temperature,
			el and	_	-	-	nods-nucleation-
	equilibriu				•		te.Singlecrystal-
	Lowandh	ightemperat	ture, s	solution gr	owth	– Gel and sol-	gel. Melt growth
	- 0. 11	G 1		.1 1 121			Bridgeman-
						hnique,physica	
				and po	ıarız	ation factor	- primary and
		extinction		Danawah	la En	LANGEY CANYONS	ion. Calar Callar
							ion: Solar Cells: kite based. Solar
							sensitized photo
						, ,	semiconductor
							. Photochemical
							nese based photo
		-	_			_	, Pd and Pt -
			-		-	om alcohol.	,
							 Nuclear spin
	and Mon	ents, origin	of n	nuclear for	ces,	Quark Theory	for sub-atomic
	particles	(basic). Sal	ient f	eatures of	the	Shell and Liqu	iid Drop Model
						•	lectron capture;
							sition, detection
							clear emulsion,
			_				enkov counters.
				•		•	actions, nuclear
						rces: direct rea	
	UNIT-V	Nuclear	Chem	nstry II:	Nuc	lear Reaction	types, reaction,

Extended	cross section, Q-value, threshold energy, Stellar energy: synthesis of elements, Hydrogen burning, Carbon burning. Photonuclear and Thermo nuclear reactions. Szilard Chalmers reaction. The e, s, r, p and x processes. Nuclear reactors- fast breeder reactors, particle accelerators, cyclotron and synchrotron. Radio analytical methods: Isotope dilution analysis, Radiometric titrations, Radio immuno assay, Neutron activation analysis. Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	(10 be discussed during the Tutorial nours)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	 Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007. Essentials of nuclear chemistry by H.J. Arnikar, Eastern Wiley(1990) Nuclear chemistry by Friedlander and Kennedy, John Wiley and Sons (1987)
Reference Books	1.Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and
	Company Ltd, 2001.
	3 C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private
	Limited, 1998. 5. A. P. West, Solid State Chemistry and Applications, John Wiley and
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and sons, 1987.
	6. Nuclear radiation detection by Price. Nuclear radiation detectors by
	S.S. Kapoor and Ramamoorthy, Wiley Eastern (1986).
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
c-icai ning source	3. https://bit.ly/3QyVg2R
Course Learning C	Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and

pyroelectricmaterials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LEDuses, structures and synthesis.

CO5:To design and develop new materials with improved property for energy applications.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	ORGAN	IC SYNTH	ESIS	AND PH	ОТО	OCHEMISTR	Y
Paper No.	Core VII	•					
Category	Core	Year	II	Credits	4	Course	
<i>S</i> •		Semester	III			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	wledge of o	organ	ic chemist	ry	•	
Objectives of the	To under	rstand the n	nolec	ular comp	lexit	y of carbon sl	celetons and the
course	presence	offunctiona	l grou	ps and the	eir re	lative positions	3.
		•	nthet	ically imp	ortar	nt reagents for	any successful
	organic s						
					nd ic	dentifying suita	able synthons to
		ccessful orga		•		1 .	
				•		on mechanisms	
	10 gain t	ne knowied	ge oi	pnotocner	nicai	organic reaction	ons.
Course Outline	IINITI	·Dlanning	on 4	Transia	Syn+	hasis andCar	ntrol elements:
Course Outilite							polung concepts
		_	•	•			rotective groups,
							on retrosynthetic
						-	ergent synthesis,
	* *	s of stereocl		•		•	,
	UNIT-II	: Organic	Synth	netic Met	hodo	logy: Retrosy	nthetic analysis;
							and bifunctional
					•		n of hydroxyl,
							on of protection
					ospec	eific control ele	ments. Functional
	group and	rations and to	ranspo	sition.			
	IINIT_II	I. Pericycl	ic R	actions:	Woo	dward Hoffm	nann rules; The
		•					cloaddition and
							nic, anionic, and
							lectrocyclization
							es and trienes.
	Sigmatro						nd (5,5)-carbon
	migration					nents. Ionic	
						reactions.	Regioselectivity,
	stereosele	ectivity in po	ericyc	lic reaction	ons.		
	TIMITE IX	7. 0	, Di	040 cl •	~ 4 1	I. Dl4 - 1	deal edead
		_			•		nical excitation:
	_		-				onskii diagrams; Stern Volmer
	equation.		ga, (neigy II	a11810	a processes;	Stell vollier
			nical	ly excited	l ket	ones: $\pi \rightarrow \pi^*$	triplets; Norrish
							s; Paterno-Buchi
	reactions		ue	, - 1 2 4 2 11 0 1	, P1		., 1
			Ph	otochemi	strv-	I: Photochem	nistry of α,β-
							energy transfer
	ansaculat	ea Recolles,	, -15-	1001			onorgy transier

Extended Professional Component (is a part of internal component only,	reactions, Photo cycloadditions, Photochemistry of aromatic compounds; photochemical rearrangements; photo-stationery state; diπ-methane rearrangement; Reaction of conjugated cyclohexadienone to 3,4-diphenyl phenols; Barton's reactions. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Not to be included in the external examination question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed,
Text	Tata McGraw-Hill, New York, 2003.
	2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed.,
	John-Wiley and sons, 2007.
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing house, 1990.
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University
	Press, Second Edition, 2016.
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International Edition, 2011.
Reference Books	1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.
	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press,
	Great Britain, 2004.
	3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn,
	Cambridge University Press, Cambridge, 2007.
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc, 1972.
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic
	Reactions, New Age International Publishers, New Delhi, 2012.
Website and	1. https://rushim.ru/books/praktikum/Monson.pdf
e-learning source	
_	ı

Students will be able:

CO1:To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2:To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3:To implement the synthetic strategies in the preparation of various organic compounds.

CO4:To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5:To design and synthesize novel organic compounds with the methodologies learnt during the course.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	COORD	INATION	CHE	MISTRY	- I					
Course										
Paper No.	Core VII	I				1				
Category	Core	Year	II Credits 4 Course							
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	-			5				
Prerequisites	Basic kno	owledge of i	norga	inic chemi	istry					
Objectives of the	To gain	insights into	the the	modern t	heori	es of bonding	in coordination			
course	compounds.									
	To learn	various n	netho	ds to det	termi	ne the stabilit	ty constants of			
	complexe									
						_	and predict the			
				_	•	in the complex				
					and	electron trans	fer mechanistic			
		ofreactions		•			1			
C O d'						d square plana	•			
Course Outline						-	ls: Crystal field			
	1						dral and square			
	1 *					•	ffecting 10Dq -			
	spectroch	emical serie	es - c	rystal fiel	d sta	bilisation energ	gy for high spin			
	and low	spin comp	lexes-	- evidence	es fo	r crystal field	splitting - site			
	selections	s in spinels	and	antispinel	ls - J	ahn Teller dis	tortions and its			
	conseque	nces.Moleci	ılar (Orbital T	heory	and energy	level diagrams			
	1 -				•	••	ng in octahedral,			
	1 -	anar and teti		•	•	1	,			
						complexes: Te	erm states for d			
		_				_	nsfer spectra -			
						_	tion diagrams -			
				_		-	series - Racha			
	_			_		nic repulsion p				
	-									
							he complexes:			
							of complexes,			
		•					ise and overall al factors and			
				•			composition of			
					-		half method,			
							Ion exchange			
							riation method			
							orbit coupling,			
							quenching of			
		agnetic mon		_			1			
					sms	of substitutio	n reactions of			
							rt and Labile			
							nistic pathways			
							of octahedral			
							e rate of water			
		*								

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	replacement reaction and their correlation to Crystal Field Activation Energy; Substitution reactions in square planar complexes: Trans effect, theories of trans effect and applications of trans effect in synthesis of square planar compounds; Kurnakov test. UNIT-V: Electron Transfer reactions in octahedral complexes: Outer sphere electron transfer reactions and Marcus-Hush theory; inner sphere electron transfer reactions; nature of the bridging ligand in inner sphere electron transfer reactions.Photo-redox, photo-substitution and photo-isomerisation reactions in complexes and their applications. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988.
Reference Books	 Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Publications, USA, 1977. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic Chemistry, 5th Edition, Oxford University Press, 2010. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas, John Wiley, 2002, 3rd edn. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman and Co, London, 2010.
Website and e-learning source	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-fall-2008/pages/syllabus/

Students will be able:

CO1:Understand and comprehend various theories of coordination compounds.

CO2:Understand the spectroscopic and magnetic properties of coordination complexes.

CO3:Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4:Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5:Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTI	RY PRAC	TIC	AL			
Course	Come IV								
Paper No.	Core IX Core	Vaar	II	Credits	4	Course			
Category	Core	Year	III	Credits	4	Course Code			
Instructional	Lastrina	Semester		Practice		Total			
hours per week	Lecture	Tutorial	5) Practice		6			
Prerequisites	Posic kno	wledge of p	_	cal chamic	tex.	0			
Objectives of the					-	luotivity evne	riments through		
course	To understand the principle of conductivity experiments through conductometric titrations.								
course					ction	. temperature	coefficient, and		
							eudo first order		
	kinetics.				- 3				
							system forming		
	_	_	solid	l and fin	ıd it	ts eutectic te	emperatures and		
	composit				_				
						of oxalic acid of			
							ogen ion, charge		
			ind N	laxwell's	spee	d distribution	by computational		
C	calculation		L. T7.		_				
Course Outline		Conductivit	-	_		C	1 . 1 . 0		
						ance of a stron	g electrolyte &		
		rerification of C				arry 6- Datamai	instian afaVa af		
		ak acid.	stwa	ia s Diiuu	on L	aw & Determi	ination of pKa of		
			fealu	hility of a	cnar	ingly soluble s	valt		
						weak acid vs N			
						alides only).	·uO11).		
		P-1441		(111111011	01 11				
	UNIT-II:	Kinetics							
	1. Study	the kinetic	s of	acid hyd	rolys	sis of an este	er, determine the		
				•	•		energy of the		
	react						<i></i>		
	2. Study	the kinetic	s of	the reacti	on b	etween acetor	ne and iodine in		
	acidi	c medium	by ha	alf-life me	thod	and determin	ne the order with		
	respe	ect to iodine	and	acetone.					
		I: Phase dia							
				gram for a	sımp	ole binary syste	em		
		alene-biphe							
	_	ohenone- dij	onen	yı amıne					
	Adsorption		ഹ;പ	on charge	sal 🤉	determination	n of surface area		
		on of oxanc			jai 0	c determinatio	n of surface area		
Extandad	`			<i>*</i>	, f	m vonious see	anatitis:a		
Extended Professional						m various con	npetitive E/TNPSC others		
Component (is a	to be solv		11/1	7 / 1NL:1/ C	JUC-	CSIK / UATE	ZITINI SC UIIIEIS		
Component (18 a	to be solv	cu							

part of internal	(To be discussed during the Tutorial hours)
1 *	(10 be discussed during the Tutorial flours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	16/Isem/cmp511/lab handout new.pdf

Students will be able:

CO1: To recall the principles associated with various physical chemistry experiments.

CO2: To scientifically plan and perform all the experiments.

CO3: To observe and record systematically the readings in all the experiments.

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ANALY	TICAL INS	TRU	JMENTA	TIO	N TECHNIQ	UES Practical				
Course											
Paper No.	Core X										
Category	Core	Year	II	Credits	4	Course					
		Semester	III			Code					
Instructional	Lecture	Tutorial	Lal	b Practice		Total					
hours per week	-	1	5			6					
Prerequisites											
Objectives of the	To design chromatographic methods for identification of species.										
course	To analyze different constituents through instrumental methods of analysis.										
				taminants	ın n	naterials using	turbidimetry and				
		ity measurem		nalvaia afir		nic and organic	matariala				
							orption techniques.				
Course Outline	UNIT-I:	c constituent	3 111 11	iateriais usi	ing ci	mssion and aos	orption teeninques.				
Course Outilite		otentiometri	c titr	ation of a 1	nixti	ire of HCl and	CH ₃ COOH Vs				
		аОН	C titi	ution of u	.111710	are or free and	. 611,60011 15				
	1		n of r	K _a of wea	k aci	id by EMF me	thod.				
		otentiometri									
		otentiometri									
	5. Po	otentiometri	c titr	ation of a 1	nixtı	are of Chloride	e and Iodide Vs				
	A	$gNO_{3.}$									
						r solution by E	MF method				
		sing Quinhy									
		•			e sug	gar in the preso	ence of acid by				
		olarimetric r	neth	od.							
	UNIT-II:		_		_						
Any 10					-	olorimetric me					
Experiments to				-		photometric n					
be chosen from					•	· ·	anide present in				
both Unit I & II		e given solu					ricyanide using				
		clic voltam)II CO		The yamide using				
					nitra	te present in th	ne given solution				
		sing spectro				•	<i>8</i>				
						COD, DO, B	OD				
	m	easurements	s.		_						
	7. A	ssay of Ribo	oflav	in and Iron	in t	ablet formulati	ons by				
		ectrophotor	•								
						dyes by TLC ((b) mixture of				
	m	etal ions by	Pape	er chromat	ogra	phy					
	TIBITED TO	г т .	, ·	1 1 1	· ·	C.1 .					
		-				on of the giver	_				
			ooun	as arrived a	at fro	om the following	ng instruments				
	2.IR	-Visible									
	2.1R 3.Ran	nan									
	4.NM										
	5.ESI										
		ss etc.,									
	0.1v1a	,, c.c.,									

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Vogel's Text book of Practical Organic Chemistry, 5th Ed,
Text	ELBS/Longman, England, 2003.
	2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, <i>Vogel's</i>
	Textbook of Quantitative Chemical Analysis; 6th ed., ELBS, 1989.
	3. J. D. Woollins, <i>Inorganic Experiments</i> ; VCH: Weinheim,
	1995.
	4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
	Viva
	Books, New Delhi,2009.
	5. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 2011.
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
*** 1 *4	Chand and Co., 1987.
Website and	1. https://bit.ly/3QESF7t
e-learning source	
C I	2. https://bit.ly/3QANOnX

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHARM	OCOGNO	SY A	ND PHY	ГОС	HEMISTRY				
Course										
Paper No.	Elective \	V								
Category	Elective	Year	II	Credits	4	Course				
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lal	Practice		Total				
hours per week	4	1	_			5				
Prerequisites	Basic kno	wledge of c	hemi	strv						
Objectives of the					l pro	ducts, biologic	cal functions and			
course	To develop the knowledge of natural products, biological functions and pharmacological uses.									
				primary a	and so	econdary meta	abolites and their			
	sources.			1 ,		•				
	To under	stand the	conce	pts of iso	olatio	n methods ar	nd separation of			
		compounds		•			^			
	To provid	le the knowl	ledge	on selecte	d gly	cosides and m	narine drugs.			
	To fami	liarize the	gui	delines o	f W	HO and dif	ferent sampling			
	technique						1 0			
Course Outline			nosy	and Sta	ındaı	dization of	Herbal drugs:			
							and Source of			
	Drugs: B	iological, m	ninera	ıl, marine,	and 1	plant tissue cu	ultures. Study of			
	pharmaco	gnosticof a	crud	e drug. Bi	iosyn	thesis: Shikin	nic acid pathway			
	and ace	tate pathy	vay.	Systema	tic	analysis of	Crude drugs.			
	Standardi	zation of H	erbal	drugs. W	HO .	guidelines, Sa	impling of crude			
	drug, Me	thods of da	rug e	valuation.	Det	ermination of	foreign matter,			
	moisture	Ash value	. Phy	tochemica	al in	vestigations-G	eneral chemical			
	tests.									
	UNIT-II:	Extraction	Tec	chniques:	Ger	neral methods	s of extraction,			
	types – 1	maceration,	Dec	oction, pe	ercola	tion, Immers	ion and soxhlet			
	extraction	l .								
	Advanced	l techniques	s- coi	unter curre	ent, s	team distillat	ion, supercritical			
	gases, sor	nication, Mi	cro w	aves assis	ted e	xtraction. Fac	tors affecting the			
	choice of	extraction p	roces	SS.						
	UNIT-III	0				noids and	volatile oils:			
							and separation			
							calyptol. Volatile			
							Classifications of			
							Structure uses.			
	_	-		-	ies;	taraxasterol:	Structure and			
		logical appl								
						ds: Occurre				
							tion, Preliminary			
							ods of structural			
	elucidatio	_		Reserp						
		structure a	nd us	ses. papav	erine	-structure, che	emical properties			
	and uses.									
							sides: Basic ring			
							tative analysis.			
		-	-		_		rdiacglycosides-			
	Digoxin,	digitoxin,	Ste	eroidal s	apon	ins glycosid	es- Diosgenin,			

	hecogenin. Plant pigments: Occurrence and general methods of structure determination, isolation and synthesis of quercetin and cyanidin chloride.Marine drugs -Selected Drug Molecules: Cardiovascular active substances, Cytotoxic compounds, antimicrobial compounds, antibiotic compounds, Anti-inflammatory agents. Marine toxins.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Gurdeep R Chatwal (2016), Organic chemistry of Natural products,
Text	Volume I&II, 5th edition, Himalaya publishing House.
	2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of
	Natural Products, Revised edition, Narosa Publishers.
Reference Books	1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to
	Modern Techniques of Plant Analysis, 4th edition, Indian reprint,
	Springer.
	2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2
	nd edition, New age international (P) limited, New Delhi.

Students will be able:

CO1:To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3:To analyze the isolated drugs

CO4:To apply various techniques to discover new alternative medicines.

CO5:To evaluate the isolated drugs for various pharmacological activities

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	BIOMOL	ECULES A	ND I	HETERO	CYC	CLIC COMPO	OUNDS
Course	E1 - 42 X7	т					
Paper No.	Elective V Elective	Year	II	Credits	4	Course	
Category	Liective			Credits	4	Code	
Instructional	Lastuma	Semester		Duastica			
Instructional	Lecture	Tutorial	Lan	Practice		Total 5	
hours per week	4 Di-1	_1 _1		L] 3	
Prerequisites		vledge of ch				-1 :	- f 1. ' 1 1
Objectives of			ncept	s and biol	logic	al importance	of biomolecules
the course	and natural		G	:			ملانه منامه
		d hormones		ions of ca	roon	ydraies, protein	s, nucleic acids,
				of alkalo	de ar	nd terpenoids.	
							iles and natural
	products.	ite the shu	cture	actermin	ation	or bioinoice	iles and natural
	_ A	and constr	net th	ne structui	re of	new alkaloids	and terpenoids
		ent methods		ic structu	01	new anatoras	and terpenoras
Course Outline				metabolis	m o	f carbohydra	tes: Definition,
							onosaccharides:
			_			-	glucose, fructose
		_	,			,	, physical and
							charides: Ring
	structures	(Haworth	form	ula) –oc	curre	ence, physical	and chemical
	properties	of maltose	, lac	tose and	suci	rose. Polysacc	harides: Starch,
	glycogen	and cellule	ose -	- structu	re a	nd properties,	glycolysis of
	carbohydra	ates.					
	UNIT-II:	Steroids a	nd I	Hormones	s:Ste	roids-Introducti	on, occurrence,
	nomenclati						' hydrocarbon,
			•				gical importance,
							s, physiological
							ne. Hormones-
		•					androgens and
	estrogens,	adrenocorti	cal h	ormones-c	ortis	one and cortis	ol structure and
	functions of	of non-steroi	dal ho	ormones-a	dren	aline and thyrox	xin.
	UNIT-III:	Proteins a	ndnu	cleicacids	s: S	eparation and	purification of
	proteins -					electrophoresis.	Catabolism of
				amination			umination and
	1	-		-	teins	Role of nucle	ic acids. Amino
	acid metab	olism and u	reacy	cle.			
	UNIT-IV:	Proteins a	ındnı	ucleicacid	s:	Structure, me	thods for the
							of heterocyclic
							nucleoside to
	nucleotides	s. Primary a	nd se	condary st	ructi	are of RNA and	l DNA, Watson-
						nucleotides.	
	TIMITE ST.	- I D'		4		1 7	
							Benzofused five
							benzothiophene,
							rings: Quinoline
	ana isoqu	monne: Pro	грага	non by 1	mg	ciosure reacti	ons, Reactions:

	Mechanism of electrophilic and nucleophilic substitutions, oxidation and
	reduction reactions.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry,
Text	Wiley VCH,North America,2007.
	I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson Education Asia,
	1975.
	V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic
	compounds, Narosa Publishing, New Delhi, 2000.
	M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal
	Publishing Co., Jalandhar, Delhi, 2014.
	V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New
	Delhi,2009.
Reference	I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson Education
Books	Asia,2004.
	Pelletier, Chemistry of Alkaloids, Van Nostrand
	Reinhold Co,2000.
	Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &
	aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad, 2004.
	M. P. Singh. and H. Panda, Medicinal Herbs with their formulations,
	Daya Publishing House, Delhi,2005.
Website and	ps://www.organic-chemistry.org/
e-learning	ps://www.studyorgo.com/summary.php
source	ps://www.clutchprep.com/organic-chemistry

Students will be able:

CO1: To understand the basic concepts of biomolecules and natural products.

CO2: To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds.

CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	COORD	INATION	СНЕ	MISTRY	– II		
Course							
Paper No.	Core X						
Category	Core	Year	II	Credits	4	Course	
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lal	Practice		Total	
hours per week	4	1	_			5	
Prerequisites	Basic kno	wledge of i	norga	anic chemi	stry	1	
Objectives of the						ots and structu	ıral aspects of
course		etallic comp			•		•
	To learn	reactions of	of or	ganometal	lic c	ompounds and	their catalytic
	behaviou	·.				•	•
	To identi	fy or predic	et the	e structure	of c	coordination co	mpounds using
	spectrosco	opic tools.					
						n coordination	
						selected comp	
Course Outline							onding in metal
						· · ·	lene and metal-
							Examples and
			_			*	nerism. Metal –
		-		-			and bonding –
							ceptor nature of
			_				ower oxidation
			-			•	high nuclearity
					ea on	polynedral sk	eleton electron
	_	y or Wade's			a of		
							c compounds: ition, reductive
		_					on reaction and
		•			-		nation of olefins
			_				sing cobalt or
							acker process),
		•	•	, ,		,	gomerisation of
				_		onto process.	-
							of UV-Visible
							s, Geometrical
	isomerisn	n using ÛV	-Visi	ble Specti	rosco	py. Effect of c	oordination on
	the stretc	hing frequ	ency.	-sulphato,	carb	onato, sulphito	o, aqua, nitro,
	thiocyana	to, cyano,	thiou	rea, DMS	O co	mplexes; IR sj	pectroscopy of
	carbonyl	compounds	. NN	IR spectro	oscop	y- Application	s of 1H, 15N,
	19F, 31P	-NMR spec	trosc	opy in str	uctui	ral identificatio	n of inorganic
	•	s, fluxional					
							rminologies: g
				· •			ecting g and A;
							one and more
							dary hyperfine
					_	ectra of V(II),	
							copper(II) and
	$\lfloor (NH_3)_5 C$	o-O ₂ -Co(NI	$[1_3)_5]$	<u>Mossb</u>	auer	spectroscopy	Mossbauer

effect, Recoil energy, Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole splitting and magnetic interactions. Applications of Mössbauer spectra to Fe and Sn compounds. UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine structures - shapes of vibrational fine structures - adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N2, O2) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H₂O, CO₂, CH₄, NH₃) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations. Optical Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques. Questions related to the above topics, from various competitive Extended Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended 1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Text Chemistry - Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. 4. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. 5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988. Reference Books 1. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. 2. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. 3. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. 4. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.

Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds

CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTI	RY-II			
Course							
Paper No.	Core XI						
Category	Core	Year	II	Credits	4	Course	
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lal	Practice		Total	L
hours per week	4	1	_			5	
Prerequisites		wledge of p	hvsi	cal chemis	strv	10	
Objectives of the						cs of wave fu	inctions and need
course		uantum mec					
	_				n med	chanical mode	els of particle in a
		l rotor and h					1
						hydrogen an	nd polyelectronic
	systems.	•				•	
	To famili	arize the sy	mmet	try in mole	ecule	s and predict t	he point groups.
	To predi	ct the vibra	itiona	l modes,	hybri	idization usin	g he concepts of
	group the	ory.					
Course Outline	UNIT-I:	Wave part	icle o	dualit y, U	ncert	ainty principl	le, Particle wave
	and Schr	odinger wa	ive e	quation, v	vave	function, pro	operties of wave
	function.	Properties	of	wave fu	ınctio	on, Normaliz	zed, Orthogonal,
	orthonorr	nal, Eigen	value	es, Eigen	func	tions, Hermit	ian properties of
							body radiation,
			hydro	ogen spec	trum.	Need for qua	ntum mechanics,
	Postulate						of
			s, Scl	nrodinger	wave	e equation, T	ime independent
	and time	dependent					
		_					two dimensional
							inear conjugated
							nonic Oscillator-
							constant and its
		_					n, calculation of
	rotational	constants a	ind bo	ond length	of di	iatomic molec	rules.
		<u> </u>	. •				•
							electron atoms:
			•	•			vave equation and
							tation of radial
							ion methods: trial
							article in 1D box. ck self-consistent
							n-Sham equation
				_			, paulis exclusion
		and Slater of			atom:	-election spin,	, paulis exclusion
					cul	arolled dress	metry elements,
							al point groups-
							n and classes of
						ducible and	
	represent	-	he	Great		thogonality	theorem –
							construction of
						oint groups.	Construction of
	Character	table for C2	v_{v}, C_{2}	h, C_{3v} and	J2h ∤	omi groups.	

	UNIT-V: Applications of quantum and group theory: Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment, Energy level diagram, Hydrogen molecule ion; Use of linear variation function and LCAO methods. Electronic conjugated system: Huckel method to Ethylene butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene. Methane, Ammonia and BF3.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper)	T 1 D 11 1 A 1 A 1 B D C 1 1
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended	1. R.K. Prasad, Quantum Chemistry, New Age International
Text	Publishers, New Delhi, 2010, 4th revised edition.
Reference Books	 F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition. N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th
Reference Books	edition.
	 D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva Books Pvt. Ltd, New Delhi, 2012. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics of Chemical Systems, Oxford & IBH Publishing Co., New Delhi, 1999. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications, Prentice Hall. Inc, 1980 J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London, 2011, Reprint.

Website and	1. https://nptel.ac.in/courses/104101124
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html

Students will be able:

CO1: To discuss the characteristics of wave functions and symmetry functions.

CO2: To classify the symmetry operation and wave equations.

CO3: To apply the concept of quantum mechanics and group theory to predict the electronic structure.

CO4: To specify the appropriate irreducible representations for theoretical applications.

CO5: To develop skills in evaluating the energies of molecular spectra.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	CHEMIST	TRY OF NAT	URA	L PRODU	CTS			
Course								
Paper No.	Elective V	[I						
Category	Core	Year	II	Credits	4	Course		
		Semester	IV			Code		
Instructional	Lecture	Tutorial	Lab	Practice		Total		
hours per week	4	1	-			5		
Prerequisites	Basic know	ledge of gene	ral ch	emistry				
Objectives of	To learn th	ne basic conc	epts a	and biologic	al im	portance of 1	biomolecules	
the course	and natural							
	To explain	various of fu	nction	s of carboh	ydrate	es, proteins, n	nucleic acids,	
		d hormones.						
		and the function						
		te the structi	are de	eterminatior	of	biomolecules	and natural	
	products.							
		and construc	t the	structure of	f new	alkaloids an	nd terpenoids	
Course Outline	from differ	ent methods.						
	functions o structuralel Coniine, Pi Cocaine, H UNIT-II:	Ikaloids: Intro falkaloids. Cla ucidation. Cho perine, Nicoti eptaphylline, Terpenoid	assific emica ne, Pa Papav Is:	ation, general methods of a paverine. A rerine and Martine and Mar	ral me f struc tropir lorphi on,	ethods of eture determine, Quinine, B ne. occurrence,	lation of selladine, Isoprene	
	determinati Zingiberine functions a	e.Carotenoids nd synthesis o	nphor : Intr f β-ca	, Abietic oduction, go rotene andv	ació eomet itami	l, Cadinene, tricalisomerisi n-A.	Squalene, m, Structure,	
	UNIT-III: Anthocyaninesandflavones: Anthocyanines: Introduction toanthocyanines. Structure and general methods of synthesis ofanthocyanines. Cyanidine chloride: structure and determination. Flavones: Biological importance of flavones. Structure and determination of flavone andflavonoids. Quercetin: Structure determination and importance.							
	isolation o biological i Steroids: S of substitue hydrocarbo cholesterol-	Purinesands f purines. Cl importance, S teroids-Introd ents, Diels' hy n, biologica -occurrence, from squalence	assific tructu uction droca l im tests,	cation and re and syntle, occurrence or stereo portance,	spectanesis ce, no chem colou	ral properties of Uric acid a omenclature, oustry, classific r reactions	of steroids. and Caffeine. configuration cation, Diels' of sterols,	

	UNIT-V: NaturalDyes: Occurrence, classification, isolation, purification,
	properties, colour and constitution. Structural determination and synthesis
	of indigoitin andalizarin.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
1	
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1,
Text	Himalaya Publishing House, Mumbai, 2009.
	2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2,
	Himalaya Publishing House, Mumbai,2009.
	3. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 1,
	Goel Publishing House, Meerut, 1997.
	4. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2,
	Goel Publishing House, Meerut, 1997.
	5. I. L. Finar, Organic Chemistry Vol-2,
	5 th edition,PearsonEducation Asia, 1975.
Reference	1. I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson
Books	Education Asia,2004.
DUINS	2. Pelletier, Chemistry of Alkaloids, Van Nostrand
	Reinhold Co,2000.
	3. Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	4. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &
	aromatic plants, Vol 1 and Vol 10, Ukkaz Publications,
	Hyderabad, 2004.
Website and	https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
	Chemisu y/organic
Source	Ontonio (for Moneiro established)

Students will be able:

CO1: To understand the biological importance of chemistry of natural products.

CO2: To scientifically plan and perform the isolation and characterization of synthesized natural products.

CO3: To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.

CO4: To determine the structure of phytochemical constituents by chemical and physical methods.

CO5: To interpret the experimental data scientifically to improve biological activity of active components.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	POLYMER	CHEMISTRY	,				
Course							
Paper No.	Elective VII	I					
Category	Core	Year	II	Credits	4	Course	
		Semester	IV	7		Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per	4	1	-			5	
week							
Prerequisites		edge of general		•			
Objectives of		basic concepts a		~ 1 3			
the course	_	arious types of 1					
		nd the importance				and their syntl	netic uses.
		e the molecular	_			•,•	
C		ne degradation o					
Course Outline		haracterization secondary bond			,		
Outilite		nemical tests,					
		ermination of N					
		ass (M_n) and W					_
		eight determina					
		echanism and					
		on: Cationic, an		•			_
	polymers:	Ziegler Natt	apolyı	nerization.	Reac	tion kineti	cs. Step
	growthpolyn	nerization, Degr	ee of p	oolymerizatio	n.		
	UNIT-III: T	Sechniques of P	•		•	nerDegradat	ion: Bulk,
	Solution,		uspen		-		and gas
		erization. Types					
		egradation, pho	otodeg	radation, Ph	otostal	bilizers, Solid	d and gas
	phase polym			D .:	C (*1		1
	elastomericn	IndustrialPolyn	ners:	Preparation	of fil	ore forming	polymers,
			. Doly	nronvlono no	1x 20 tx 200	ona Dalvaamul	onitrilo Do
		ics:Polyethylend Ioride, Poly					
		ng Plastics: Phe					
		per and synthet					
		Polymers: Eler					
	_	ne, poly pyrro		•	-		· ·
		olyamides,poly			ıreas,		-
	polypropyler	•		, 1 3	,	1 3 3	
	_ , , , ,	lymerProcessir	ıg: C	ompounding	Polyn	ner Additive	s: Fillers,
	/	antioxidants, th		,			
		Techniques:Cal		-	_	•	-
	injection	0)	blow	moulding	,	ndreinforcing	,
	_	mofoaming, Fo	_	-		•	
		talyst support,	-	-		-	to-exhaust
D . 1 1		nadium, heterog		•			
Extended		lated to the above					
Professional		8 / NET/ UGC-C			SC oth	ners to be solv	rea .
Component	(10 be discu	ssed during the	ı utori	ai nours)			

(is a part of internal component only, Not to be included in the external examination question paper)	
Skills	Knowledge, Problem solving, Analytical ability, Professional Competency,
acquired from	Professional Communication and Transferable skills.
this course	
Recommend	1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.
ed Text	2. G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age International
	(Pvt) Limited,1996.
	3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &
	Company, New Delhi, 2004.
Reference	1. F. N. Billmeyer, <i>Textbook of Polymer Science</i> , Wiley Interscience,1971.
Books	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and
	Engineering, Tata McGraw-Hill,1978.

Students will be able:

CO1: To understand the bonding in polymers.

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course: CORE INDUSTRIAL MODULES

PaperNumber:COREX

SuggestivetopicsforCoreIndustryModules:

1. IndustrialProcessesRecommended

Text:

- 1. H.A.Strobel, Chemical Instrumentation: A Systematic approach, 2nd Edition (1973) Addition Wesley, Reading, Mass
- 2. R.L.Pecsok,L.D.Shields,T.CavinsandL.C.Mcwilliam,2ndEdition(1976),jo hnWiley&Sons,NewYork
- 3. E.W.Berg, Chemical Methods of Separations, 1st Edition (1963), McGraw Hill, New York

2. Chemometrics and quality control

inindustryRecommendedText:

- 4. G.D.Christian, Analytical chemistry, 5th edition (1994), John Wiley & Sons, New York
- 5. M.A.SharatandD.L.Illuran, Chemometrics, John Wiley, New York
- 6. Canlcutt and R. Roddy, Statistics for Analytical Chemists, Chapmam and Hall, New York.

Title of the	PROJECT VIVA					
Course						
Paper No.	Elective VIII					
Category	Core	Year	II	Credits	9	Course
		Semester	IV			Code
Instructional	Lecture	Tutorial	Lab	Practice		Total
hours per week						10
Prerequisites	Basic knowledge of General Chemistry Research					

Title of the Course	COMPUTATIONAL CHEMISTRY						
Paper No.	Skill En	hancement	Cou	rse			
Category	Core	Year Semester	I	Credits	2	Course Code	PCCHTSE2
Prerequisites Objectives of the course	Knowled	dge of Comp	uters	and inform	natio	n about Chen	nistry
Course Outline	Unit I Basics of Computers: Hardware and Software – Types of Languages: Higher level and lower languages, examples. BIOS and RAM: Significance. – Central Processing Unit and GPU Input Devices and Types of computing: Parallel and Sequential. Types: Personal Computers, Notebook, Workstation, Servers and Supercomputers- Definitions and examples. Storage Device: Magnetic tapes vs Solid State disks. Memory devices: OLED and OFET descriptions Unit II Approach to computing: Flowcharts: Significance of flowcharts and example to compute simple examples in chemistry like pH of a solution, Temperature conversion (F to C) and van der Waals' equation, First Order rate equation – all using BASIC programming. About useful programming languages for Chemistry: Examples C and C++ and Python (only introduction). Resources on the internet – Drawing of Chemical Structures and saving formats: ChemSketch and similar freeware. Online services for property prediction and internet basics (Example: Molinspiration)- Format conversions: OpenBabel						
	Unit III Applications of Computational Sciences in Chemistry: Computational Quantum Chemistry and its applications, Prediction of Molecular Properties using Computational chemistry softwares, Overview of Quantum Chemistry Theories like HF, SCF and Approximation methods and their level of accuracy and hierarchy of computational requirements. Basis Sets used in computation. Overview of Computer aided Drug Design and prediction of Material properties. Analysis of optimized structure for geometry parameters like bond length, angle and torsional angle. Charge on the atoms – Mulliken, Lowdin and NBO charges and population.						
	Unit IV Computational Methods and Software: Molecular Dynamics, Se empirical methods, ab-initio and Density Functional Theory – Definitions Significance. Introduction to Software available for all the above meth (Opensource like AMBER, MOPAC, GAMESS) including web based (onl submission). Input generation using coordinates and z matrix. Generation coordinates for Water, Hydrogen Peroxide, Formaldehyde, Methane, Etha Ethylene, Benzene and Aniline. Calculation of properties from these method including zero-point energy and reaction coordinates (description).					ry – Definitions and the above methods g web based (online atrix. Generation of e, Methane, Ethane, from these methods,	
	Unit V Cheminformatics and Molecular Modelling – Molecular descriptors to include HOMO, LUMO, Softness, Hardness, Dipole moment and log P. Fukui functions for predicting reactivity of molecules using FMO - Nucleophilicity and Electrophilicity - Band gap estimation in eV and their						

	significance. QSAR and QSPR: Relating bio-reactivity with structure using simple IC ₅₀ values. Use of Hammett-Taft equation and Lipinski Rule – Drug Designing basics to include action mechanism and using PDB structures for docking with software and Score prediction. Conformational Analysis –
	Ramachandran Plot. Protein Data Base and its significance.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Molecular Modeling – Principles and Applications, A. R. Leach
Text	(Addison Wesley Longman)2. Introduction to Computational Chemistry, F. Jensen (Wiley)
	Essentials of Computational Chemistry – Theories and Models, C. J. Cramer
	(Wiley)
	3. Computational Chemistry – A Practical Guide fo Applying
	Techniques to Real World Problems, David Young (Wiley)
	4. Exploring Chemistry with Electronic Structure Methods, J. B.
	Foresman and A. Frisch (Gaussian Inc.)
Reference Books	6.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-
e-learning source	fall-2008/pages/syllabus/

Title of the Course	INDUSTRIAL CHEMISTRY						
Paper No.	Skill Enhancement Course						
Category	Core	Year	I	Credits	2	Course	
		Semester	II			Code	
Prerequisites	Analytical techniques in chemistry and fundamentals of industry						
Objectives of the							
course							
Course Outline	<u>Unit I</u>	Unit I					
	Statistical Quality Control Techniques: Statistical treatment of data. Control						
	charts, Performance Evaluation uncertainties in measurement. Validation of						
	analytical methods. Quality Assurance: Elements of quality Assurance,						
	Quality Management System Quality management concepts and principles:						
	ISO 9001:2000 QMS Case studies on ISO 9001: 2000 in chemical industries.						
	ISO 14000 Series of Standards. TQM in Chemical Industry. Six Sigma						
	Approach to Quality: Applying Six Sigma to chemical Industries. Good						
	Laboratory Practices: Principles of GLP, GMP in Drugs and Pharmaceutical						

Industries Accreditation of QC laboratories: Tools and Mechanisms ICH Guidelines on Drug substances and Products.

Unit II

Distillation Unit Process: Introduction, volatility, relative volatility, general equipment for distillation, types of distillation processes, concept of batch and continuous distillation, simple steam distillation, advantages and disadvantages of steam distillation, application of steam distillation in various chemical processes. Evaporation and Drying Introduction, factors affecting the rate of evaporation and choice of evaporators, application of evaporation in chemical process industries, equipment- climbing film evaporator, Introduction of drying process, free moisture, bound moisture and equilibrium moisture content, purpose of drying, equipment- rotary dryer.

Unit III

Purification and Filtration: Introduction, filter media and filter aids, characteristics of ideal filter aids, factors affecting the rate of filtration and choice of filter media, equipment- bag filters and candle filters. Absorption Introduction, desorption or gas stripping, equipment-spray column for absorption. Material Balance Introduction, steady and unsteady state of flow processes, material balance equation without chemical reactions, flow/block diagrams for various industrially important chemical engineering operations such as distillation, absorption and crystallization and their overall material balance equation.

Unit IV

Metallurgical operations: Definition, crushing and pulverization, concentration methods, gravity separation, magnetic concentration, froth flotation process, chemical methods- calcination and roasting, reduction using carbon and carbon monoxide, Alumino thermite reduction, auto reduction, reduction using precipitation method, refining methods polling, parting and electrolyte refining. Metallurgical Extraction Metallurgical extraction and refining of the following metals from their important ores: Lead from galena, Aluminum from bauxite and Zinc from Zinc blende.

Unit V

Industrial hygiene & Safety: Concept, air and biological monitoring, occupational disease, operational control measures, personal protective equipments; Industrial hazards and Safety: Process hazards checklists, hazard surveys, safety program, Hazop safety reviews. Industrial pollution: Classification of hazards chemicals, storage, transportation, handling, risk assessments, challenges/solutions. Ecofriendly effluents disposal: Water pollutants, health hazards, sampling and analysis of water, water treatment, different industrial and domestic effluents and their treatment and disposal, advanced waste water treatment, effluent quality standards and laws, chemical industries, tannery, dairy, textile effluents, common treatment. Sensors: Concept of molecular sensors its properties and applications

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Recommended	1. Physical chemistry by B.R Puri, I.R Sharma and M.S Pathania.					
Text	Study Material in Vocational Subject to Industrial Chemistry (B.Sc. I,					
	UGC) Sponsored (Text Book)					
	2. Principles of Extractive Metallurgy, Herbashi Vol. 1 and 2.					
	3. Introduction to Chemical Engineering W.L. Badger and J.T.					
	Banchero, Mc Graw- Hill Book Co.,USA.					
	4. Unit Operations in Chemical Engineering W.L. McCabe and					
	J.C Smith, Mc Graw- Hill Books co., New York.					
	5. Physical Chemistry, G.M. Barrow, Tata McGraw-Hill.					
	6. Riegel's Handbook of Industrial Chemistry, J.A. Kent, J.A.(ed),					
	CBS Publishers, New Delhi.					
	7. Saxena Ruchi, Srivastava Alok Kumar, "Read & Do Practical					
	Chemistry", Kitab Mahal, New Delhi, India (2016).					
	8. Skoog D. A., West. D.M and Holler .F.J., "Analytical					
	Chemistry: An Introduction", 7 th edition, Saunders college					
	publishing, Philadelphia (2010).					
	9. G. Larry Hargis, "Analytical Chemistry: Principles and					
	Techniques" Pearson© (1988)					
Suggested links	Suggested links for e-resources:					
for e-resources	https://swayam.gov.in/					
	https://nptel.ac.in/courses/112/104/112104113/					
	https://onlinecourses.nptel.ac.in/noc19_ph14/preview					
	http://heecontent.upsdc.gov.in/Home.aspx					
	https://ncert.nic.in/textbook.php?kech1=0-7					
	https://www.labster.com/chemistry-virtual-labs/					
	http://chemcollective.org/vlab					